IDEAS home Printed from https://ideas.repec.org/p/nuf/econwp/108.html

Likelihood Analysis of Non-Gaussian Parameter-Driven Models

Author

Listed:
  • Shephard, N.
  • Pitt, M.K.

Abstract

No abstract is available for this item.

Suggested Citation

  • Shephard, N. & Pitt, M.K., 1995. "Likelihood Analysis of Non-Gaussian Parameter-Driven Models," Economics Papers 108, Economics Group, Nuffield College, University of Oxford.
  • Handle: RePEc:nuf:econwp:108
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pitt, M.K. & Walker, S.G., 2001. "Construction of Stationary Time Series via the Giggs Sampler with Application to Volatility Models," The Warwick Economics Research Paper Series (TWERPS) 595, University of Warwick, Department of Economics.
    2. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    3. Charles Bos & Neil Shephard, 2006. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 219-244.
    4. Junji Shimada & Yoshihiko Tsukuda, 2004. "Estimation of Stochastic Volatility Models : An Approximation to the Nonlinear State Space," Econometric Society 2004 Far Eastern Meetings 611, Econometric Society.
    5. Roman Liesenfeld & Jean-Francois Richard, 2006. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 335-360.
    6. Michael K Pitt & Neil Shephard, "undated". "Filtering via simulation: auxiliary particle filters," Economics Papers 1997-W13, Economics Group, Nuffield College, University of Oxford.
    7. Koopman, Siem Jan & Harvey, Andrew, 2003. "Computing observation weights for signal extraction and filtering," Journal of Economic Dynamics and Control, Elsevier, vol. 27(7), pages 1317-1333, May.
    8. Jung, Robert & Kukuk, Martin & Liesenfeld, Roman, 2005. "Time Series of Count Data: Modelling and Estimation," Economics Working Papers 2005-08, Christian-Albrechts-University of Kiel, Department of Economics.
    9. Andrew D. Sanford & Gael Martin, 2004. "Bayesian Analysis of Continuous Time Models of the Australian Short Rate," Monash Econometrics and Business Statistics Working Papers 11/04, Monash University, Department of Econometrics and Business Statistics.
    10. Tina Hviid Rydberg & Neil Shephard, 2000. "BIN Models for Trade-by-Trade Data. Modelling the Number of Trades in a Fixed Interval of Time," Econometric Society World Congress 2000 Contributed Papers 0740, Econometric Society.
    11. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    12. Siem Jan Koopman & Neil Shephard, 2002. "Testing the Assumptions Behind the Use of Importance Sampling," Economics Papers 2002-W17, Economics Group, Nuffield College, University of Oxford.
    13. Mark Glickman, 2001. "Dynamic paired comparison models with stochastic variances," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(6), pages 673-689.
    14. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689, December.
    15. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
    16. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    17. Garland Durham, 2004. "Likelihood-based estimation and specification analysis of one- and two-factor SV models with leverage effects," Econometric Society 2004 North American Summer Meetings 294, Econometric Society.
    18. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
    19. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    20. Joel Hasbrouck, 1998. "Security Bid/Ask Dynamics with Discreteness and Clustering: Simple Strategies for Modeling and Estimation," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-042, New York University, Leonard N. Stern School of Business-.
    21. Jurgen A. Doornik & David F. Hendry & Neil Shephard, "undated". "Computationally-intensive Econometrics using a Distributed Matrix-programming Language," Economics Papers 2001-W22, Economics Group, Nuffield College, University of Oxford.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C42 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Survey Methods
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://www.nuffield.ox.ac.uk/economics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.