IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models

  • Chris M Strickland

    ()

  • Gael Martin

    ()

  • Catherine S Forbes

    ()

The impact of parameterisation on the simulation efficiency of Bayesian Markov chain Monte Carlo (MCMC) algorithms for two non-Gaussian state space models is examined. Specifically, focus is given to particular forms of the stochastic conditional duration (SCD) model and the stochastic volatility (SV) model, with four alternative parameterisations of each model considered. A controlled experiment using simulated data reveals that relationships exist between the simulation efficiency of the MCMC sampler, the magnitudes of the population parameters and the particular parameterisation of the state space model. Results of an empirical analysis of two separate transaction data sets for the SCD model, as well as equity and exchange rate data sets for the SV model, are also reported. Both the simulation and empirical results reveal that substantial gains in simulation efficiency can be obtained from simple reparameterisations of both types of non-Gaussian state space models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2006/wp22-06.pdf
Download Restriction: no

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 22/06.

as
in new window

Length: 31 pages
Date of creation: Dec 2006
Date of revision:
Handle: RePEc:msh:ebswps:2006-22
Contact details of provider: Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61-3-9905-2489
Fax: +61-3-9905-5474
Web page: http://www.buseco.monash.edu.au/depts/ebs/Email:


More information through EDIRC

Order Information: Web: http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/ Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
  2. Michael K Pitt & Neil Shephard, 1996. "Analytic convergence rates and parameterisation issues for the Gibbs sampler applied to state space models," Economics Papers 20 & 113, Economics Group, Nuffield College, University of Oxford.
  3. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, EconWPA.
  4. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
  5. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-89, October.
  6. Robert, Christian P. & Mengersen, Kerrie L., 1999. "Reparameterisation Issues in Mixture Modelling and their bearing on MCMC algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 29(3), pages 325-343, January.
  7. Chris M. Strickland & Catherine S. Forbes & Gael M. Martin, 2003. "Bayesian Analysis of the Stochastic Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 14/03, Monash University, Department of Econometrics and Business Statistics.
  8. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
  9. Charles S. Bos & Neil Shephard, 2004. "Inference for Adaptive Time Series Models: Stochastic Volatility and Conditionally Gaussian State Space Form," Economics Papers 2004-W02, Economics Group, Nuffield College, University of Oxford.
  10. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
  11. Gareth O. Roberts & Omiros Papaspiliopoulos & Petros Dellaportas, 2004. "Bayesian inference for non-Gaussian Ornstein-Uhlenbeck stochastic volatility processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 369-393.
  12. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
  13. Durbin, James & Koopman, Siem Jan, 2001. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, number 9780198523543.
  14. BAUWENS, Luc & VEREDAS, David, . "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," CORE Discussion Papers RP -1688, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  15. repec:cup:etheor:v:12:y:1996:i:3:p:409-31 is not listed on IDEAS
  16. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
  17. Shephard, N. & Pitt, M.K., 1995. "Likelihood Analysis of Non-Gaussian Parameter-Driven Models," Economics Papers 108, Economics Group, Nuffield College, University of Oxford.
  18. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
  19. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2006-22. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Grose)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.