IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/27305.html
   My bibliography  Save this paper

Bayesian stochastic model specification search for seasonal and calendar effects

Author

Listed:
  • Tommaso, Proietti
  • Stefano, Grassi

Abstract

We apply a recent methodology, Bayesian stochastic model specification search (SMSS), for the selection of the unobserved components (level, slope, seasonal cycles, trading days effects) that are stochastically evolving over time. SMSS hinges on two basic ingredients: the non-centered representation of the unobserved components and the reparameterization of the hyperparameters representing standard deviations as regression parameters with unrestricted support. The choice of the prior and the conditional independence structure of the model enable the definition of a very efficient MCMC estimation strategy based on Gibbs sampling. We illustrate that the methodology can be quite successfully applied to discriminate between stochastic and deterministic trends, fixed and evolutive seasonal and trading day effects.

Suggested Citation

  • Tommaso, Proietti & Stefano, Grassi, 2010. "Bayesian stochastic model specification search for seasonal and calendar effects," MPRA Paper 27305, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:27305
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/27305/1/MPRA_paper_27305.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    2. Arnold Zellner, 1978. "Seasonal Analysis of Economic Time Series," NBER Books, National Bureau of Economic Research, Inc, number zell78-1.
    3. Arnold Zellner, 1979. "Seasonal Analysis of Economic Time Series," NBER Books, National Bureau of Economic Research, Inc, number zell79-1, December.
    4. Koop, Gary & Dijk, Herman K. Van, 2000. "Testing for integration using evolving trend and seasonals models: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 97(2), pages 261-291, August.
    5. Hylleberg, S. & Pagan, A. R., 1997. "Seasonal integration and the evolving seasonals model," International Journal of Forecasting, Elsevier, vol. 13(3), pages 329-340, September.
    6. Busetti, Fabio & Harvey, Andrew, 2003. "Seasonality Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 420-436, July.
    7. Dagum, Estela Bee & Quenneville, Benoit, 1993. "Dynamic linear models for time series components," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 333-351.
    8. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    9. repec:cup:cbooks:9780521835954 is not listed on IDEAS
    10. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    11. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, September.
    12. Nerlove, Marc & Grether, David M. & Carvalho, José L., 1979. "Analysis of Economic Time Series," Elsevier Monographs, Elsevier, edition 1, number 9780125157506 edited by Shell, Karl.
    13. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    14. Hannan, E J & Terrell, R D & Tuckwell, N E, 1970. "The Seasonal Adjustment of Economic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 11(1), pages 24-52, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tommaso Proietti & Stefano Grassi, 2015. "Stochastic trends and seasonality in economic time series: new evidence from Bayesian stochastic model specification search," Empirical Economics, Springer, vol. 48(3), pages 983-1011, May.
    2. Grassi, S. & Proietti, T., 2014. "Characterising economic trends by Bayesian stochastic model specification search," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 359-374.
    3. Wildi Marc & McElroy Tucker, 2016. "Optimal Real-Time Filters for Linear Prediction Problems," Journal of Time Series Econometrics, De Gruyter, vol. 8(2), pages 155-192, July.
    4. Rolando Gonzales Martínez, 2012. "Baysian seasonal analysis with robust priors," Investigación & Desarrollo, Universidad Privada Boliviana, vol. 1(1), pages 88-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Proietti & Stefano Grassi, 2015. "Stochastic trends and seasonality in economic time series: new evidence from Bayesian stochastic model specification search," Empirical Economics, Springer, vol. 48(3), pages 983-1011, May.
    2. Svend Hylleberg, 2006. "Seasonal Adjustment," Economics Working Papers 2006-04, Department of Economics and Business Economics, Aarhus University.
    3. Grassi, S. & Proietti, T., 2014. "Characterising economic trends by Bayesian stochastic model specification search," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 359-374.
    4. Koop, Gary & Dijk, Herman K. Van, 2000. "Testing for integration using evolving trend and seasonals models: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 97(2), pages 261-291, August.
    5. Busetti, Fabio & Taylor, A. M. Robert, 2003. "Testing against stochastic trend and seasonality in the presence of unattended breaks and unit roots," Journal of Econometrics, Elsevier, vol. 117(1), pages 21-53, November.
    6. Fabio Busetti, 2006. "Tests of seasonal integration and cointegration in multivariate unobserved component models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(4), pages 419-438.
    7. Breitung, Jörg, 1998. "On model based seasonal adjustment procedures," SFB 373 Discussion Papers 1998,12, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
    9. Gabriel Pons, 2006. "Testing Monthly Seasonal Unit Roots With Monthly and Quarterly Information," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 191-209, March.
    10. Campos, Julia, 1991. "A Brief Look on the Literature on Deseasonalization," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 11(2), November.
    11. [Reference to Proietti], Tommaso, 2000. "Comparing seasonal components for structural time series models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 247-260.
    12. Proietti, Tommaso & Pedregal, Diego J., 2023. "Seasonality in High Frequency Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 62-82.
    13. Kastner, Gregor & Frühwirth-Schnatter, Sylvia, 2014. "Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 408-423.
    14. Tommaso Proietti & Eric Hillebrand, 2017. "Seasonal changes in central England temperatures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 769-791, June.
    15. Jerry A. Hausman & Mark W. Watson, 1983. "Seasonal Adjustment with Measurement Error Present," NBER Working Papers 1133, National Bureau of Economic Research, Inc.
    16. Victor Gomez & Jorg Breitung, 1999. "The Beveridge–Nelson Decomposition: A Different Perspective with New Results," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(5), pages 527-535, September.
    17. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    18. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    19. Gabriele Fiorentini & Enrique Sentana, 2016. "Neglected serial correlation tests in UCARIMA models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 121-178, March.
    20. David Kohns & Arnab Bhattacharjee, 2020. "Nowcasting Growth using Google Trends Data: A Bayesian Structural Time Series Model," Papers 2011.00938, arXiv.org, revised May 2022.

    More about this item

    Keywords

    Seasonality; Structural time series models; Variable selection.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:27305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.