IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v16y2000i2p247-260.html
   My bibliography  Save this article

Comparing seasonal components for structural time series models

Author

Listed:
  • [Reference to Proietti], Tommaso

Abstract

No abstract is available for this item.

Suggested Citation

  • [Reference to Proietti], Tommaso, 2000. "Comparing seasonal components for structural time series models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 247-260.
  • Handle: RePEc:eee:intfor:v:16:y:2000:i:2:p:247-260
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169-2070(00)00037-6
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    2. Hylleberg, S. & Pagan, A. R., 1997. "Seasonal integration and the evolving seasonals model," International Journal of Forecasting, Elsevier, vol. 13(3), pages 329-340, September.
    3. Canova, Fabio & Hansen, Bruce E, 1995. "Are Seasonal Patterns Constant over Time? A Test for Seasonal Stability," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 237-252, July.
    4. Froeb, Luke & Koyak, Robert, 1994. "Measuring and comparing smoothness in time series the production smoothing hypothesis," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 97-122.
    5. Hannan, E J & Terrell, R D & Tuckwell, N E, 1970. "The Seasonal Adjustment of Economic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 11(1), pages 24-52, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
    2. Siem Jan Koopman & Kai Ming Lee, 2009. "Seasonality with trend and cycle interactions in unobserved components models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 427-448.
    3. Philip Hans Franses & Yoshinori Kawasaki, 2004. "Do seasonal unit roots matter for forecasting monthly industrial production?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(2), pages 77-88.
    4. Proietti, Tommaso & Riani, Marco, 2007. "Transformations and Seasonal Adjustment: Analytic Solutions and Case Studies," MPRA Paper 7862, University Library of Munich, Germany.
    5. Irma Hindrayanto & John A.D. Aston & Siem Jan Koopman & Marius Ooms, 2013. "Modelling trigonometric seasonal components for monthly economic time series," Applied Economics, Taylor & Francis Journals, vol. 45(21), pages 3024-3034, July.
    6. Tommaso Proietti & Marco Riani, 2009. "Transformations and seasonal adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 47-69, January.
    7. Giacomo Sbrana & Andrea Silvestrini, 2012. "Temporal aggregation of cyclical models with business cycle applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 93-107, March.
    8. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    9. Commandeur, Jacques J. F. & Koopman, Siem Jan & Ooms, Marius, 2011. "Statistical Software for State Space Methods," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 41(i01).
    10. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    11. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    12. Proietti Tommaso, 2004. "Seasonal Specific Structural Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-22, May.
    13. Proietti, Tommaso, 2005. "New algorithms for dating the business cycle," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 477-498, April.
    14. repec:eee:ejores:v:263:y:2017:i:2:p:412-418 is not listed on IDEAS
    15. Katharina Hampel & Marcus Kunz & Norbert Schanne & Ruediger Wapler & Antje Weyh, 2006. "Regional Unemployment Forecasting Using Structural Component Models With Spatial Autocorrelation," ERSA conference papers ersa06p196, European Regional Science Association.
    16. Tommaso Proietti, 2012. "Seasonality, Forecast Extensions And Business Cycle Uncertainty," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 555-569, September.
    17. Koenig, P., 2012. "The effect of LNG on the rleationship between UK and Continental European natural gas markets," Cambridge Working Papers in Economics 1253, Faculty of Economics, University of Cambridge.
    18. Phillip Gould & Anne B. Koehler & Farshid Vahid-Araghi & Ralph D. Snyder & J. Keith Ord & Rob J. Hyndman, 2004. "Forecasting Time-Series with Correlated Seasonality," Monash Econometrics and Business Statistics Working Papers 28/04, Monash University, Department of Econometrics and Business Statistics, revised Oct 2005.
    19. Harvey, A. & Thiele, S., 2017. "Co-integration and control: assessing the impact of events using time series data," Cambridge Working Papers in Economics 1731, Faculty of Economics, University of Cambridge.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:16:y:2000:i:2:p:247-260. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.