IDEAS home Printed from https://ideas.repec.org/p/eei/rpaper/eeri_rp_2010_25.html
   My bibliography  Save this paper

Characterizing economic trends by Bayesian stochastic model specification search

Author

Listed:
  • Stefano Grassi
  • Tommaso Proietti

Abstract

We apply a recently proposed Bayesian model selection technique, known as stochastic model specification search, for characterising the nature of the trend in macroeconomic time series. We illustrate that the methodology can be quite successfully applied to discriminate between stochastic and deterministic trends. In particular, we formulate autoregressive models with stochastic trends components and decide on whether a specific feature of the series, i.e. the underlying level and/or the rate of drift, are fixed or evolutive.

Suggested Citation

  • Stefano Grassi & Tommaso Proietti, 2010. "Characterizing economic trends by Bayesian stochastic model specification search," EERI Research Paper Series EERI_RP_2010_25, Economics and Econometrics Research Institute (EERI), Brussels.
  • Handle: RePEc:eei:rpaper:eeri_rp_2010_25
    as

    Download full text from publisher

    File URL: http://www.eeri.eu/documents/wp/EERI_RP_2010_25.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Harvey, Andrew, 2001. "Testing in Unobserved Components Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(1), pages 1-19, January.
    2. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    3. Tommaso, Proietti & Stefano, Grassi, 2010. "Bayesian stochastic model specification search for seasonal and calendar effects," MPRA Paper 27305, University Library of Munich, Germany.
    4. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    5. Sims, Christopher A., 1988. "Bayesian skepticism on unit root econometrics," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 463-474.
    6. Caner, M. & Kilian, L., 2001. "Size distortions of tests of the null hypothesis of stationarity: evidence and implications for the PPP debate," Journal of International Money and Finance, Elsevier, vol. 20(5), pages 639-657, October.
    7. Phillips, Peter C.B. & Ploberger, Werner, 1994. "Posterior Odds Testing for a Unit Root with Data-Based Model Selection," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 774-808, August.
    8. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    9. Schwert, G William, 2002. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 5-17, January.
    10. Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
    11. Harvey,Andrew & Koopman,Siem Jan & Shephard,Neil (ed.), 2004. "State Space and Unobserved Component Models," Cambridge Books, Cambridge University Press, number 9780521835954, June.
    12. DeJong, David N & Whiteman, Charles H, 1991. "The Case for Trend-Stationarity Is Stronger Than We Thought," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 413-421, Oct.-Dec..
    13. DeJong, David N. & Nankervis, John C. & Savin, N. E. & Whiteman, Charles H., 1992. "The power problems of unit root test in time series with autoregressive errors," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 323-343.
    14. Koop, Gary & Dijk, Herman K. Van, 2000. "Testing for integration using evolving trend and seasonals models: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 97(2), pages 261-291, August.
    15. Koop, Gary, 1994. "Recent Progress in Applied Bayesian Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 8(1), pages 1-34, March.
    16. Sims, Christopher A & Uhlig, Harald, 1991. "Understanding Unit Rooters: A Helicopter Tour," Econometrica, Econometric Society, vol. 59(6), pages 1591-1599, November.
    17. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    18. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    19. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    20. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    21. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    22. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2003. "What Happens After a Technology Shock?," NBER Working Papers 9819, National Bureau of Economic Research, Inc.
    23. Chib S. & Jeliazkov I., 2001. "Marginal Likelihood From the Metropolis-Hastings Output," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 270-281, March.
    24. Schotman, Peter C & van Dijk, Herman K, 1991. "On Bayesian Routes to Unit Roots," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 387-401, Oct.-Dec..
    25. Fossati, Sebastian, 2012. "Covariate unit root tests with good size and power," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3070-3079.
    26. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    27. Proietti, Tommaso & Harvey, Andrew, 2000. "A Beveridge-Nelson smoother," Economics Letters, Elsevier, vol. 67(2), pages 139-146, May.
    28. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    29. Phillips, P C B, 1991. "To Criticize the Critics: An Objective Bayesian Analysis of Stochastic Trends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 333-364, Oct.-Dec..
    30. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    31. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    32. Leybourne, S J & McCabe, B P M, 1994. "A Consistent Test for a Unit Root," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 157-166, April.
    33. Koop, Gary, 1992. "'Objective' Bayesian Unit Root Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(1), pages 65-82, Jan.-Marc.
    34. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tommaso Proietti & Stefano Grassi, 2015. "Stochastic trends and seasonality in economic time series: new evidence from Bayesian stochastic model specification search," Empirical Economics, Springer, vol. 48(3), pages 983-1011, May.
    2. Filippo Ferroni & Stefano Grassi & Miguel A. Leon-Ledesma, 2015. "Fundamental shock selection in DSGE models," Studies in Economics 1508, School of Economics, University of Kent.
    3. Michael O’Grady, 2019. "Estimating the Output, Inflation and Unemployment Gaps in Ireland using Bayesian Model Averaging," The Economic and Social Review, Economic and Social Studies, vol. 50(1), pages 35-76.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Proietti & Stefano Grassi, 2015. "Stochastic trends and seasonality in economic time series: new evidence from Bayesian stochastic model specification search," Empirical Economics, Springer, vol. 48(3), pages 983-1011, May.
    2. Loukia Meligkotsidou & Elias Tzavalis & Ioannis D. Vrontos, 2004. "A Bayesian Analysis of Unit Roots and Structural Breaks in the Level and the Error Variance of Autoregressive Models," Working Papers 514, Queen Mary University of London, School of Economics and Finance.
    3. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    4. N. Vijayamohanan Pillai, 2001. "Electricity demand analysis and forecasting: The tradition is questioned," Centre for Development Studies, Trivendrum Working Papers 312, Centre for Development Studies, Trivendrum, India.
    5. Murray, Christian J. & Nelson, Charles R., 2000. "The uncertain trend in U.S. GDP," Journal of Monetary Economics, Elsevier, vol. 46(1), pages 79-95, August.
    6. Gil-Alana, L. A. & Robinson, P. M., 1997. "Testing of unit root and other nonstationary hypotheses in macroeconomic time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 241-268, October.
    7. Henry, Olan T. & Shields, Kalvinder, 2004. "Is there a unit root in inflation?," Journal of Macroeconomics, Elsevier, vol. 26(3), pages 481-500, September.
    8. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    9. Sevan Gulesserian & Mohitosh Kejriwal, 2014. "On the power of bootstrap tests for stationarity: a Monte Carlo comparison," Empirical Economics, Springer, vol. 46(3), pages 973-998, May.
    10. Francis W. Ahking, 2004. "The Power of the "Objective" Bayesian Unit-Root Test," Working papers 2004-14, University of Connecticut, Department of Economics.
    11. Vosseler, Alexander, 2016. "Bayesian model selection for unit root testing with multiple structural breaks," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 616-630.
    12. N. Vijayamohanan Pillai, 2010. "Electricity Demand Analysis and Forecasting- The Tradition is Questioned," Working Papers id:2966, eSocialSciences.
    13. Tung Liu & Lee C. Spector, 2005. "Dynamic employment adjustments over business cycles," Empirical Economics, Springer, vol. 30(1), pages 151-169, January.
    14. Luis Uzeda, 2016. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," ANU Working Papers in Economics and Econometrics 2016-632, Australian National University, College of Business and Economics, School of Economics.
    15. Trofimov, Ivan D., 2018. "The secular decline in profit rates: time series analysis of a classical hypothesis," MPRA Paper 88248, University Library of Munich, Germany.
    16. Francis W. Ahking, 2002. "Is the Bayesian Approach Necessarily Better than the Classical Approach in Unit-Root Test?," Working papers 2002-18, University of Connecticut, Department of Economics.
    17. Hsu, Yi-Chung & Lee, Chien-Chiang & Lee, Chi-Chuan, 2008. "Revisited: Are shocks to energy consumption permanent or temporary? New evidence from a panel SURADF approach," Energy Economics, Elsevier, vol. 30(5), pages 2314-2330, September.
    18. Mengheng Li & Ivan Mendieta-Munoz, 2019. "The multivariate simultaneous unobserved components model and identification via heteroskedasticity," Working Paper Series 2019/08, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
    19. Patrick Marsh, "undated". "A Measure of Distance for the Unit Root Hypothesis," Discussion Papers 05/02, Department of Economics, University of York.
    20. Sonali Das & Rangan Gupta & Patrick Kanda & Monique Reid & Christian Tipoy & Mulatu Zerihun, 2014. "Real interest rate persistence in South Africa: evidence and implications," Economic Change and Restructuring, Springer, vol. 47(1), pages 41-62, February.

    More about this item

    Keywords

    Bayesian model selection; stationarity; unit roots; stochastic trends; variable selection.;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eei:rpaper:eeri_rp_2010_25. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/eeriibe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Julia van Hove (email available below). General contact details of provider: https://edirc.repec.org/data/eeriibe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.