IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Efficient importance sampling for ML estimation of SCD models

  • BAUWENS, Luc

    (Université catholique de Louvain (UCL). Center for Operations Research and Econometrics (CORE))

  • GALLI, Fausto

The evaluation of the likelihood function of the stochastic conditional duration model requires to compute an integral that has the dimension of the sample size. We apply the efficient importance sampling method for computing this integral. We compare EIS-based ML estimation with QML estimation based on the Kalman filter. We find that EIS-ML estimation is more precise statistically, at a cost of an acceptable loss of quickness of computations. We illustrate this with simulated and real data. We show also that the EIS-ML method is easy to apply to extensions of the SCD model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.uclouvain.be/cps/ucl/doc/core/documents/coredp2007_53.pdf
Download Restriction: no

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 2007053.

as
in new window

Length:
Date of creation: 01 Aug 2007
Date of revision:
Handle: RePEc:cor:louvco:2007053
Contact details of provider: Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
Phone: 32(10)474321
Fax: +32 10474304
Web page: http://www.uclouvain.be/core
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
  2. BAUWENS, Luc & ROMBOUTS, Jeroen V.K., . "Econometrics," CORE Discussion Papers RP 1713, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    • Rombouts, Jeroen V. K. & Bauwens, Luc, 2004. "Econometrics," Papers 2004,33, Humboldt-Universität Berlin, Center for Applied Statistics and Economics (CASE).
  3. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
  4. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
  5. Luc Bauwens & Nikolaus Hautsch, 2006. "Stochastic Conditional Intensity Processes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 450-493.
  6. GHYSELS, Eric & HARVEY, Andrew & RENAULT, Eric, 1995. "Stochastic Volatility," CORE Discussion Papers 1995069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  7. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," CORE Discussion Papers 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  8. Chris M. Strickland & Catherine S. Forbes & Gael M. Martin, 2003. "Bayesian Analysis of the Stochastic Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 14/03, Monash University, Department of Econometrics and Business Statistics.
  9. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
  10. Dingan Feng, 2004. "Stochastic Conditional Duration Models with "Leverage Effect" for Financial Transaction Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(3), pages 390-421.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2007053. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.