IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Nonparametric Density Estimation for Positive Time Series

The Gaussian kernel density estimator is known to have substantial problems for bounded random variables with high density at the boundaries. For i.i.d. data several solutions have been put forward to solve this boundary problem. In this paper we propose the gamma kernel estimator as density estimator for positive data from a stationary ?-mixing process. We derive the mean integrated squared error, almost sure convergence and asymptotic normality. In a Monte Carlo study, where we generate data from an autoregressive conditional duration model and a stochastic volatility model, we find that the gamma kernel outperforms the local linear density estimator. An application to data from financial transaction durations, realized volatility and electricity price data is provided.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.hec.ca/iea/cahiers/2006/iea0609_jrombouts.pdf
Download Restriction: no

Paper provided by HEC Montréal, Institut d'économie appliquée in its series Cahiers de recherche with number 06-09.

as
in new window

Length: 34 pages
Date of creation: Sep 2006
Date of revision:
Handle: RePEc:iea:carech:0609
Contact details of provider: Postal:
Institut d'économie appliquée HEC Montréal 3000, Chemin de la Côte-Sainte-Catherine Montréal, Québec H3T 2A7

Phone: (514) 340-6463
Fax: (514) 340-6469
Web page: http://www.hec.ca/iea/
Email:


More information through EDIRC

Order Information: Postal: Institut d'économie appliquée HEC Montréal 3000, Chemin de la Côte-Sainte-Catherine Montréal, Québec H3T 2A7
Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Chen, Song Xi, 1999. "Local linear smoothers using asymmetric kernels," SFB 373 Discussion Papers 1999,100, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  2. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339 Elsevier.
  3. Lejeune, Michel & Sarda, Pascal, 1992. "Smooth estimators of distribution and density functions," Computational Statistics & Data Analysis, Elsevier, vol. 14(4), pages 457-471, November.
  4. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521586115, 1.
  5. BAUWENS, Luc & GIOT, Pierre & GRAMMIG, Joachim & VEREDAS, David, . "A comparison of financial duration models via density forecasts," CORE Discussion Papers RP 1746, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  6. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
  7. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
  8. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  9. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
  10. Meitz, Mika & Saikkonen, Pentti, 2008. "Ergodicity, Mixing, And Existence Of Moments Of A Class Of Markov Models With Applications To Garch And Acd Models," Econometric Theory, Cambridge University Press, vol. 24(05), pages 1291-1320, October.
  11. Matthias Hagmann & Olivier Scaillet, 2004. "Local Multiplicative Bias Correction For Asymmetric Kernel Density Estimators," Royal Economic Society Annual Conference 2004 25, Royal Economic Society.
  12. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  13. Pham, Tuan D. & Tran, Lanh T., 1985. "Some mixing properties of time series models," Stochastic Processes and their Applications, Elsevier, vol. 19(2), pages 297-303, April.
  14. Fernandes, M., 2000. "Central Limit Theorem for Asymmetric Kernel Functionals," Economics Working Papers eco2000/1, European University Institute.
  15. Eric Ghysels & Christian Gourieroux & Joanna Jasiak, 1997. "Stochastic Volatility Duration Models," Working Papers 97-46, Centre de Recherche en Economie et Statistique.
  16. Park, B.U. & Simar, L., 1992. "Efficient Semiparametric Estimation in Stochastic Frontier Model," Papers 9201, Catholique de Louvain - Institut de statistique.
  17. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
  18. Olivier SCAILLET, 2001. "Density Estimation Using Inverse and Reciprocal Inverse Guassian Kernels," Discussion Papers (IRES - Institut de Recherches Economiques et Sociales) 2001017, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
  19. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
  20. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  21. BAUWENS, Luc & VEREDAS, David, . "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," CORE Discussion Papers RP 1688, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  22. Niels Haldrup & Morten O. Nielsen, 2004. "A Regime Switching Long Memory Model for Electricity Prices," Economics Working Papers 2004-2, School of Economics and Management, University of Aarhus.
  23. James D. Hamilton & Oscar Jorda, 2000. "A Model for the Federal Funds Rate Target," NBER Working Papers 7847, National Bureau of Economic Research, Inc.
  24. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
  25. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  26. Fernandes, Marcelo & Grammig, Joachim, 2003. "A family of autoregressive conditional duration models," Economics Working Papers (Ensaios Economicos da EPGE) 501, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  27. Luc Bauwens & Nikolaus Hautsch, 2006. "Stochastic Conditional Intensity Processes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 450-493.
  28. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
  29. Carrasco, Marine & Chernov, Mikhail & Florens, Jean-Pierre & Ghysels, Eric, 2007. "Efficient estimation of general dynamic models with a continuum of moment conditions," Journal of Econometrics, Elsevier, vol. 140(2), pages 529-573, October.
  30. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
  31. Abadir, Karim M. & Lawford, Steve, 2004. "Optimal asymmetric kernels," Economics Letters, Elsevier, vol. 83(1), pages 61-68, April.
  32. GHYSELS, Eric & HARVEY, Andrew & RENAULT, Eric, 1995. "Stochastic Volatility," CORE Discussion Papers 1995069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  33. Bouezmarni, Taoufik & Scaillet, Olivier, 2005. "Consistency Of Asymmetric Kernel Density Estimators And Smoothed Histograms With Application To Income Data," Econometric Theory, Cambridge University Press, vol. 21(02), pages 390-412, April.
  34. Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
  35. Drost, F.C. & Werker, B.J.M., 2004. "Semiparametric duration models," Other publications TiSEM a1895e3e-f720-454b-9613-f, Tilburg University, School of Economics and Management.
  36. Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
  37. Fan J. & Zhang C., 2003. "A Reexamination of Diffusion Estimators With Applications to Financial Model Validation," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 118-134, January.
  38. Stanton, Richard, 1997. " A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk," Journal of Finance, American Finance Association, vol. 52(5), pages 1973-2002, December.
  39. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  40. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
  41. David A. Chapman & Neil D. Pearson, 1998. "Is the Short Rate Drift Actually Nonlinear?," Finance 9808005, EconWPA.
  42. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer, vol. 52(3), pages 471-480, September.
  43. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
  44. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
  45. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201, July.
  46. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
  47. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
  48. Luc Bauwens & David Veredas, 2004. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," ULB Institutional Repository 2013/136234, ULB -- Universite Libre de Bruxelles.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:iea:carech:0609. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Patricia Power)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.