IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2008cf573.html
   My bibliography  Save this paper

Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes

Author

Listed:
  • Nikolay Gospodinov

    (Department of Economics, Concordia University and CIREQ)

  • Masayuki Hirukawa

    (Department of Economics, Northern Illinois University)

Abstract

This paper considers a nonstandard kernel regression for strongly mixing processes when the regressor is nonnegative. The nonparametric regression is implemented using asymmetric kernels [Gamma (Chen, 2000b), Inverse Gaussian and Reciprocal Inverse Gaussian (Scaillet, 2004) kernels] that possess some appealing properties such as lack of boundary bias and adaptability in the amount of smoothing. The paper investigates the asymptotic and finite-sample properties of the asymmetric kernel Nadaraya-Watson, local linear, and re-weighted Nadaraya-Watson estimators. Pointwise weak consistency, rates of convergence and asymptotic normality are established for each of these estimators. As an important economic application of asymmetric kernel regression estimators, we reexamine the problem of estimating scalar diffusion processes.

Suggested Citation

  • Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2008cf573
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2008/2008cf573.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bandi, Federico M., 2002. "Short-term interest rate dynamics: a spatial approach," Journal of Financial Economics, Elsevier, vol. 65(1), pages 73-110, July.
    2. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    3. Bruce M. Brown, 1999. "Beta-Bernstein Smoothing for Regression Curves with Compact Support," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(1), pages 47-59.
    4. M.C. Jones & D.A. Henderson, 2007. "Miscellanea Kernel-Type Density Estimation on the Unit Interval," Biometrika, Biometrika Trust, vol. 94(4), pages 977-984.
    5. Marcelo Fernandes & Paulo Monteiro, 2005. "Central limit theorem for asymmetric kernel functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 425-442, September.
    6. Song Chen, 2002. "Local Linear Smoothers Using Asymmetric Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 312-323, June.
    7. Peter C. B. Phillips, 2005. "Jackknifing Bond Option Prices," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 707-742.
    8. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    9. Christopher S. Jones, 2003. "Nonlinear Mean Reversion in the Short-Term Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 793-843, July.
    10. Hall, Peter & Wolff, Rodney C. L. & Yao, Qiwei, 1999. "Methods for estimating a conditional distribution function," LSE Research Online Documents on Economics 6631, London School of Economics and Political Science, LSE Library.
    11. Lu, Zudi & Linton, Oliver, 2007. "Local Linear Fitting Under Near Epoch Dependence," Econometric Theory, Cambridge University Press, vol. 23(01), pages 37-70, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    2. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2008cf573. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office). General contact details of provider: http://edirc.repec.org/data/ritokjp.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.