IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Local Multiplicative Bias Correction For Asymmetric Kernel Density Estimators

  • Matthias Hagmann
  • Olivier Scaillet

We consider semiparametric asymmetric kernel density estimators when the unknown density has support on [0, ¥). We provide a unifying framework which contains asymmetric kernel versions of several semiparametric density estimators considered previously in the literature. This framework allows us to use popular parametric models in a nonparametric fashion and yields estimators which are robust to misspecification. We further develop a specification test to determine if a density belongs to a particular parametric family. The proposed estimators outperform rival non- and semiparametric estimators in finite samples and are simple to implement. We provide applications to loss data from a large Swiss health insurer and Brazilian income data.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repec.org/res2004/HagmannScaillet.pdf
File Function: full text
Download Restriction: no

Paper provided by Royal Economic Society in its series Royal Economic Society Annual Conference 2004 with number 25.

as
in new window

Length:
Date of creation: 17 Sep 2004
Date of revision:
Handle: RePEc:ecj:ac2004:25
Contact details of provider: Postal: Office of the Secretary-General, School of Economics and Finance, University of St. Andrews, St. Andrews, Fife, KY16 9AL, UK
Phone: +44 1334 462479
Web page: http://www.res.org.uk/society/annualconf.asp
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
  2. Matthias Hagmann & Olivier Scaillet, 2004. "Local Multiplicative Bias Correction For Asymmetric Kernel Density Estimators," Royal Economic Society Annual Conference 2004 25, Royal Economic Society.
  3. Fernandes, M., 2000. "Central Limit Theorem for Asymmetric Kernel Functionals," Economics Working Papers eco2000/1, European University Institute.
  4. Robert F. Engle, 1996. "The Econometrics of Ultra-High Frequency Data," NBER Working Papers 5816, National Bureau of Economic Research, Inc.
  5. O. Scaillet, 2001. "Density Estimation Using Inverse and Reciprocal Inverse Gaussian Kernels," THEMA Working Papers 2001-24, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  6. Christian Gourieroux & Joanna Jasiak, 2001. "Local Likelihood Density Estimation and Value at Risk," Working Papers 2001-31, Centre de Recherche en Economie et Statistique.
  7. Olivier RENAULT & Olivier SCAILLET, 2003. "On the Way to Recovery: A Nonparametric Bias Free Estimation of Recovery Rate Densities," FAME Research Paper Series rp83, International Center for Financial Asset Management and Engineering.
  8. Abadir, Karim M. & Lawford, Steve, 2004. "Optimal asymmetric kernels," Economics Letters, Elsevier, vol. 83(1), pages 61-68, April.
  9. Bolance, Catalina & Guillen, Montserrat & Perch Nielsen, Jens, 2000. "Kernel Density Estimation of Actuarial Loss Functions," Finance Working Papers 00-4, University of Aarhus, Aarhus School of Business, Department of Business Studies.
  10. Yacine Ait-Sahalia, 1995. "Nonparametric Pricing of Interest Rate Derivative Securities," NBER Working Papers 5345, National Bureau of Economic Research, Inc.
  11. Chen, Song Xi, 1999. "Local linear smoothers using asymmetric kernels," SFB 373 Discussion Papers 1999,100, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  12. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
  13. Frank A Cowell & Francisco H.G. Ferreira & Julie Litchfield, 1996. "Income Distribution in Brazil 1981-1990: Parametric and Non-Parametric Approaches," STICERD - Distributional Analysis Research Programme Papers 21, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  14. Gozalo, Pedro & Linton, Oliver, 2000. "Local nonlinear least squares: Using parametric information in nonparametric regression," Journal of Econometrics, Elsevier, vol. 99(1), pages 63-106, November.
  15. Bouezmarni, Taoufik & Scaillet, Olivier, 2005. "Consistency Of Asymmetric Kernel Density Estimators And Smoothed Histograms With Application To Income Data," Econometric Theory, Cambridge University Press, vol. 21(02), pages 390-412, April.
  16. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  17. Fan, Yanqin, 1998. "Goodness-Of-Fit Tests Based On Kernel Density Estimators With Fixed Smoothing Parameters," Econometric Theory, Cambridge University Press, vol. 14(05), pages 604-621, October.
  18. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer, vol. 52(3), pages 471-480, September.
  19. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
  20. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecj:ac2004:25. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.