IDEAS home Printed from https://ideas.repec.org/p/ecj/ac2004/25.html

Local Multiplicative Bias Correction For Asymmetric Kernel Density Estimators

Author

Listed:
  • Matthias Hagmann
  • Olivier Scaillet

Abstract

We consider semiparametric asymmetric kernel density estimators when the unknown density has support on [0, ¥). We provide a unifying framework which contains asymmetric kernel versions of several semiparametric density estimators considered previously in the literature. This framework allows us to use popular parametric models in a nonparametric fashion and yields estimators which are robust to misspecification. We further develop a specification test to determine if a density belongs to a particular parametric family. The proposed estimators outperform rival non- and semiparametric estimators in finite samples and are simple to implement. We provide applications to loss data from a large Swiss health insurer and Brazilian income data.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Matthias Hagmann & Olivier Scaillet, 2004. "Local Multiplicative Bias Correction For Asymmetric Kernel Density Estimators," Royal Economic Society Annual Conference 2004 25, Royal Economic Society.
  • Handle: RePEc:ecj:ac2004:25
    as

    Download full text from publisher

    File URL: http://repec.org/res2004/HagmannScaillet.pdf
    File Function: full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    2. Masayuki Hirukawa & Mari Sakudo, 2015. "Family of the generalised gamma kernels: a generator of asymmetric kernels for nonnegative data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 41-63, March.
    3. Hirukawa, Masayuki & Sakudo, Mari, 2019. "Another bias correction for asymmetric kernel density estimation with a parametric start," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 158-165.
    4. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    5. Juxia Xiao & Xu Li & Jianhong Shi, 2019. "Local linear smoothers using inverse Gaussian regression," Statistical Papers, Springer, vol. 60(4), pages 1225-1253, August.
    6. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    7. Sancetta, Alessio, 2013. "Weak conditions for shrinking multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 285-300.
    8. Marcelo Fernandes & Eduardo Mendes & Olivier Scaillet, 2015. "Testing for symmetry and conditional symmetry using asymmetric kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 649-671, August.
    9. Arthur Charpentier & Emmanuel Flachaire, 2015. "Log-Transform Kernel Density Estimation Of Income Distribution," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 141-159.
    10. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2014. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 89-121.
    11. Gospodinov, Nikolay & Hirukawa, Masayuki, 2012. "Nonparametric estimation of scalar diffusion models of interest rates using asymmetric kernels," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 595-609.
    12. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
    13. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Nonparametric Estimation of Scalar Diffusion Processes of Interest Rates Using Asymmetric Kernels," Working Papers 08011, Concordia University, Department of Economics, revised Dec 2008.
    14. Hirukawa, Masayuki & Sakudo, Mari, 2014. "Nonnegative bias reduction methods for density estimation using asymmetric kernels," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 112-123.
    15. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    16. El Ghouch, Anouar & Genton, Marc G., 2009. "Local Polynomial Quantile Regression With Parametric Features," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1416-1429.
    17. Malec, Peter & Schienle, Melanie, 2014. "Nonparametric kernel density estimation near the boundary," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
    18. Christopher Withers & Saralees Nadarajah, 2013. "Density estimates of low bias," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(3), pages 357-379, April.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecj:ac2004:25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.