IDEAS home Printed from https://ideas.repec.org/p/hhb/aarfin/2000_004.html
   My bibliography  Save this paper

Kernel Density Estimation of Actuarial Loss Functions

Author

Listed:
  • Bolance, Catalina

    (Department of Finance, Aarhus School of Business)

  • Guillen, Montserrat

    (Department of Finance, Aarhus School of Business)

  • Perch Nielsen, Jens

    (Codan)

Abstract

No abstract is available for this item.

Suggested Citation

  • Bolance, Catalina & Guillen, Montserrat & Perch Nielsen, Jens, 2000. "Kernel Density Estimation of Actuarial Loss Functions," Finance Working Papers 00-4, University of Aarhus, Aarhus School of Business, Department of Business Studies.
  • Handle: RePEc:hhb:aarfin:2000_004
    as

    Download full text from publisher

    File URL: http://www.hha.dk/afl/wp/fin/glfin/D00_4.PDF
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bolance, Catalina & Guillen, Montserrat & Nielsen, Jens Perch, 2003. "Kernel density estimation of actuarial loss functions," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 19-36, February.
    2. Gavin, John & Haberman, Steven & Verrall, Richard, 1993. "Moving weighted average graduation using kernel estimation," Insurance: Mathematics and Economics, Elsevier, vol. 12(2), pages 113-126, April.
    3. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    4. Hall, Peter & Marron, J. S., 1987. "Estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 109-115, November.
    5. Kalb, G.R.J. & Kofman, P. & Vorst, T.C.F., 1995. "Mixtures of Tails in Clustered Automobile Claims," Monash Econometrics and Business Statistics Working Papers 11/95, Monash University, Department of Econometrics and Business Statistics.
    6. Panjer, Harry H., 1981. "Recursive Evaluation of a Family of Compound Distributions," ASTIN Bulletin, Cambridge University Press, vol. 12(1), pages 22-26, June.
    7. Kalb, Guyonne R. J. & Kofman, Paul & Vorst, Ton C. F., 1996. "Mixtures of tails in clustered automobile collision claims," Insurance: Mathematics and Economics, Elsevier, vol. 18(2), pages 89-107, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
    2. David Pitt & Montserrat Guillen & Catalina Bolancé, 2011. "Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers XREAP2011-06, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.
    3. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    4. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    5. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    6. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    7. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    8. Venegas-Martínez, Francisco & Franco-Arbeláez, Luis Ceferino & Franco-Ceballos, Luis Eduardo & Murillo-Gómez, Juan Guillermo, 2015. "Riesgo operativo en el sector salud en Colombia: 2013," eseconomía, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 0(43), pages 7-36, segundo s.
    9. Dhaene, Jan & Vandebroek, Martina, 1995. "Recursions for the individual model," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 31-38, April.
    10. Loisel, Stéphane & Mazza, Christian & Rullière, Didier, 2009. "Convergence and asymptotic variance of bootstrapped finite-time ruin probabilities with partly shifted risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 374-381, December.
    11. Vexler, Albert & Gao, Xinyu & Zhou, Jiaojiao, 2023. "How to implement signed-rank wilcox.test() type procedures when a center of symmetry is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    12. Gathy, Maude & Lefèvre, Claude, 2010. "On the Lagrangian Katz family of distributions as a claim frequency model," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 76-83, August.
    13. Willmot, Gordon E., 1997. "Bounds for compound distributions based on mean residual lifetimes and equilibrium distributions," Insurance: Mathematics and Economics, Elsevier, vol. 21(1), pages 25-42, October.
    14. Bolancé, Catalina & Guillén, Montserrat & Nielsen, Jens Perch, 2008. "Inverse beta transformation in kernel density estimation," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1757-1764, September.
    15. Eling, Martin, 2014. "Fitting asset returns to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 45-56.
    16. Mokkadem, Abdelkader & Pelletier, Mariane, 2020. "Online estimation of integrated squared density derivatives," Statistics & Probability Letters, Elsevier, vol. 166(C).
    17. Alexandre Kurth & Dirk Tasche, 2002. "Credit Risk Contributions to Value-at-Risk and Expected Shortfall," Papers cond-mat/0207750, arXiv.org, revised Nov 2002.
    18. Max Köhler & Anja Schindler & Stefan Sperlich, 2014. "A Review and Comparison of Bandwidth Selection Methods for Kernel Regression," International Statistical Review, International Statistical Institute, vol. 82(2), pages 243-274, August.
    19. Hall, Peter & Wolff, Rodney C. L., 1995. "Estimators of integrals of powers of density derivatives," Statistics & Probability Letters, Elsevier, vol. 24(2), pages 105-110, August.
    20. Støve, Bård & Tjøstheim, Dag, 2007. "A Convolution Estimator for the Density of Nonlinear Regression Observations," Discussion Papers 2007/25, Norwegian School of Economics, Department of Business and Management Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhb:aarfin:2000_004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helle Vinbaek Stenholt (email available below). General contact details of provider: https://edirc.repec.org/data/ifhhadk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.