IDEAS home Printed from
   My bibliography  Save this paper

Intraday Dynamics of Volatility and Duration: Evidence from the Chinese Stock Market


  • Chun Liu
  • John M Maheu


We propose a new joint model of intraday returns and durations to study the dynamics of several Chinese stocks. We include IBM from the U.S. market for comparison purposes. Flexible innovation distributions are used for durations and returns, and the total variance of returns is decomposed into different volatility components associated with different transaction horizons. Our new model strongly dominates existing specifications in the literature. The conditional hazard functions are non-monotonic and there is strong evidence for different volatility components. Although diurnal patterns, volatility components, and market microstructure implications are similar across the markets, there are interesting differences. Durations for lightly traded Chinese stocks tend to carry more information than heavily traded stocks. Chinese investors usually have longer investment horizons, which may be explained by the specific trading rules in China.

Suggested Citation

  • Chun Liu & John M Maheu, 2010. "Intraday Dynamics of Volatility and Duration: Evidence from the Chinese Stock Market," Working Papers tecipa-401, University of Toronto, Department of Economics.
  • Handle: RePEc:tor:tecipa:tecipa-401

    Download full text from publisher

    File URL:
    File Function: Main Text
    Download Restriction: no

    References listed on IDEAS

    1. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," CORE Discussion Papers 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Dow, James & Gorton, Gary, 1997. "Noise Trading, Delegated Portfolio Management, and Economic Welfare," Journal of Political Economy, University of Chicago Press, vol. 105(5), pages 1024-1050, October.
    3. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    4. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
    5. Maheu, John M. & McCurdy, Thomas H., 2011. "Do high-frequency measures of volatility improve forecasts of return distributions?," Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
    6. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
    7. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    9. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    10. Terence Tai-Leung Chong & Qian Su, 2006. "On the Comovement of A and H Shares," Chinese Economy, Taylor & Francis Journals, vol. 39(5), pages 68-86, October.
    11. Shao, Xi-Dong & Lian, Yu-Jun & Yin, Lian-Qian, 2009. "Forecasting Value-at-Risk using high frequency data: The realized range model," Global Finance Journal, Elsevier, vol. 20(2), pages 128-136.
    12. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, Elsevier.
    13. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
    14. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    15. Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.
    16. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    17. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifractal Volatility," Elsevier Monographs, Elsevier, edition 1, number 9780121500139.
    18. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    19. Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
    20. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    21. Lars Forsberg & Eric Ghysels, 2007. "Why Do Absolute Returns Predict Volatility So Well?," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 31-67.
    22. Easley, David & O'Hara, Maureen, 1992. " Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    23. Oomen, Roel C.A., 2006. "Properties of Realized Variance Under Alternative Sampling Schemes," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 219-237, April.
    24. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
    Full references (including those not matched with items on IDEAS)

    More about this item


    market microstructure; transaction horizon; high-frequency data; ACD; GARCH;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tor:tecipa:tecipa-401. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePEc Maintainer) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.