IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v79y2009i8p2535-2555.html
   My bibliography  Save this article

Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market

Author

Listed:
  • Allen, David
  • Lazarov, Zdravetz
  • McAleer, Michael
  • Peiris, Shelton

Abstract

In this paper a number of alternative autoregressive conditional duration (ACD) models are compared using a sample of data for three major companies traded on the Australian Stock Exchange. The comparison is performed by employing the methodology for evaluating density and interval forecasts, developed by Diebold et al. [F. Diebold, A. Gunther, S. Tay, Evaluating density forecasts with applications to financial risk management, International Economic Review 39 (1998) 863–883] and Christoffersen [P. Christoffersen, Evaluating interval forecasts, International Economic Review 39 (1998) 841–862], respectively. Our main finding is that the generalized gamma and log-normal distributions for the error terms have similar performance and perform better that the exponential and Weibull distributions. Additionally, there seems to be no substantial difference between the standard ACD specification of Engle and Russel [R. Engle, J. Russell, Autoregressive conditional duration: a new model for irregularly-spaced transaction data, Econometrica 66 (1998) 1127–1162] and the log-ACD specification of Bauwens and Giot [L. Bauwens, P. Giot, The logarithmic ACD model: an application to the bid-ask quote process of three NYSE stocks, Annales d’Economie et de Statistique 60 (2000) 117–150].

Suggested Citation

  • Allen, David & Lazarov, Zdravetz & McAleer, Michael & Peiris, Shelton, 2009. "Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2535-2555.
  • Handle: RePEc:eee:matcom:v:79:y:2009:i:8:p:2535-2555
    DOI: 10.1016/j.matcom.2008.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475408004102
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
    3. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
    4. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    5. repec:adr:anecst:y:2000:i:60 is not listed on IDEAS
    6. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
    7. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    8. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    9. Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
    10. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    11. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    12. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    13. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    14. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
    15. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," CORE Discussion Papers 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
    17. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    18. Dingan Feng, 2004. "Stochastic Conditional Duration Models with "Leverage Effect" for Financial Transaction Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(3), pages 390-421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasileios Siakoulis & Ioannis Venetis, 2015. "On inter-arrival times of bond market extreme events. An application to seven European markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(4), pages 717-741, October.
    2. Caporin, Massimiliano & Preś, Juliusz, 2012. "Modelling and forecasting wind speed intensity for weather risk management," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3459-3476.
    3. Allen, David & Ng, K.H. & Peiris, Shelton, 2013. "The efficient modelling of high frequency transaction data: A new application of estimating functions in financial economics," Economics Letters, Elsevier, vol. 120(1), pages 117-122.
    4. Siakoulis, Vasilios, 2015. "Modeling bank default intensity in the USA using autoregressive duration models," MPRA Paper 64526, University Library of Munich, Germany.
    5. Gresnigt, Francine & Kole, Erik & Franses, Philip Hans, 2015. "Interpreting financial market crashes as earthquakes: A new Early Warning System for medium term crashes," Journal of Banking & Finance, Elsevier, vol. 56(C), pages 123-139.
    6. Allen, David E. & Gao, Jiti & McAleer, Michael, 2009. "Modelling and managing financial risk: An overview," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2521-2524.
    7. Allen, David & Ng, K.H. & Peiris, Shelton, 2013. "Estimating and simulating Weibull models of risk or price durations: An application to ACD models," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 214-225.
    8. Marcello Rambaldi & Emmanuel Bacry & Fabrizio Lillo, 2016. "The role of volume in order book dynamics: a multivariate Hawkes process analysis," Papers 1602.07663, arXiv.org.

    More about this item

    Keywords

    ACD models; Comparison; Forecasts; Australia;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:79:y:2009:i:8:p:2535-2555. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.