IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Comparison of alternative ACD models via density and interval forecasts: Evidence from the Australian stock market

Listed author(s):
  • Allen, David
  • Lazarov, Zdravetz
  • McAleer, Michael
  • Peiris, Shelton

In this paper a number of alternative autoregressive conditional duration (ACD) models are compared using a sample of data for three major companies traded on the Australian Stock Exchange. The comparison is performed by employing the methodology for evaluating density and interval forecasts, developed by Diebold et al. [F. Diebold, A. Gunther, S. Tay, Evaluating density forecasts with applications to financial risk management, International Economic Review 39 (1998) 863–883] and Christoffersen [P. Christoffersen, Evaluating interval forecasts, International Economic Review 39 (1998) 841–862], respectively. Our main finding is that the generalized gamma and log-normal distributions for the error terms have similar performance and perform better that the exponential and Weibull distributions. Additionally, there seems to be no substantial difference between the standard ACD specification of Engle and Russel [R. Engle, J. Russell, Autoregressive conditional duration: a new model for irregularly-spaced transaction data, Econometrica 66 (1998) 1127–1162] and the log-ACD specification of Bauwens and Giot [L. Bauwens, P. Giot, The logarithmic ACD model: an application to the bid-ask quote process of three NYSE stocks, Annales d’Economie et de Statistique 60 (2000) 117–150].

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0378475408004102
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Mathematics and Computers in Simulation (MATCOM).

Volume (Year): 79 (2009)
Issue (Month): 8 ()
Pages: 2535-2555

as
in new window

Handle: RePEc:eee:matcom:v:79:y:2009:i:8:p:2535-2555
DOI: 10.1016/j.matcom.2008.12.014
Contact details of provider: Web page: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
  2. Fulvio Corsi & Stefan Mittnik & Christian Pigorsch & Uta Pigorsch, 2008. "The Volatility of Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 46-78.
  3. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
  4. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
  5. repec:adr:anecst:y:2000:i:60 is not listed on IDEAS
  6. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
  7. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
  8. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
  9. Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
  10. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
  11. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
  12. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
  13. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
  14. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
  15. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," CORE Discussion Papers 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  16. Madhavan, Ananth, 2000. "Market microstructure: A survey," Journal of Financial Markets, Elsevier, vol. 3(3), pages 205-258, August.
  17. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  18. Dingan Feng, 2004. "Stochastic Conditional Duration Models with "Leverage Effect" for Financial Transaction Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(3), pages 390-421.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:79:y:2009:i:8:p:2535-2555. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.