Ordinal-response models for irregularly spaced transactions: A forecasting exercise
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Meddahi, Nour & Renault, Eric & Werker, Bas, 2006.
"GARCH and irregularly spaced data,"
Economics Letters, Elsevier, vol. 90(2), pages 200-204, February.
- Meddahi, N. & Renault, E. & Werker, B.J.M., 2003. "GARCH and Irregularly Spaced Data," Discussion Paper 2003-27, Tilburg University, Center for Economic Research.
- Dufour, Alfonso & Engle, Robert F, 1999. "Time and the Price Impact of a Trade," University of California at San Diego, Economics Working Paper Series qt62c0h04j, Department of Economics, UC San Diego.
- Fletcher, Roy A, 1995. "The Role of Information and the Time between Trades: An Empirical Investigation," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 18(2), pages 239-260, Summer.
- Geweke, John & Amisano, Gianni, 2011.
"Optimal prediction pools,"
Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
- John Geweke & Gianni Amisano, 2008. "Optimal Prediction Pools," Working Paper series 22_08, Rimini Centre for Economic Analysis.
- Amisano, Gianni & Geweke, John, 2009. "Optimal Prediction Pools," Working Paper Series 1017, European Central Bank.
- Marcelo Fernandes & Marcelo C. Medeiros & Alvaro Veiga, 2016. "A (Semi)Parametric Functional Coefficient Logarithmic Autoregressive Conditional Duration Model," Econometric Reviews, Taylor & Francis Journals, vol. 35(7), pages 1221-1250, August.
- Gottlieb, Gary & Kalay, Avner, 1985. "Implications of the Discreteness of Observed Stock Prices," Journal of Finance, American Finance Association, vol. 40(1), pages 135-153, March.
- Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
- BAUWENS, Luc & VEREDAS, David, 1999.
"The stochastic conditional duration model: a latent factor model for the analysis of financial durations,"
LIDAM Discussion Papers CORE
1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & David Veredas, 2004. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," ULB Institutional Repository 2013/136234, ULB -- Universite Libre de Bruxelles.
- Hausman, Jerry A. & Lo, Andrew W. & MacKinlay, A. Craig, 1992.
"An ordered probit analysis of transaction stock prices,"
Journal of Financial Economics, Elsevier, vol. 31(3), pages 319-379, June.
- Hausman, Jerry A. & Lo, Andrew W. & MacKinlay, Archie Craig, 1955-, 1990. "An ordered probit analysis of transaction stock prices," Working papers 3234-90., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Jerry A. Hausman & Andrew W. Lo & A. Craig MacKinlay, 1991. "An Ordered Probit Analysis of Transaction Stock Prices," NBER Working Papers 3888, National Bureau of Economic Research, Inc.
- Hausman, J.A. & Lo, A.W. & MacKinlay, A.C., 1991. "An Ordered Probit Analysis of Transaction Stock Prices," Weiss Center Working Papers 26-91, Wharton School - Weiss Center for International Financial Research.
- Raffaella Giacomini & Halbert White, 2006.
"Tests of Conditional Predictive Ability,"
Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
- Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
- Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
- Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, University Library of Munich, Germany.
- Fernandes, Marcelo & Grammig, Joachim, 2006.
"A family of autoregressive conditional duration models,"
Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
- FERNANDES, Marcelo & GRAMMIG, Joachim, 2001. "A family of autoregressive conditional duration models," LIDAM Discussion Papers CORE 2001036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Fernandes, Marcelo & Grammig, Joachim, 2003. "A family of autoregressive conditional duration models," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 501, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Fernandes, Marcelo & Grammig, Joachim, 2002. "A family of autoregressive conditional duration models," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 440, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Bauwens, Luc & Veredas, David, 2004.
"The stochastic conditional duration model: a latent variable model for the analysis of financial durations,"
Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
- BAUWENS, Luc & VEREDAS, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," LIDAM Reprints CORE 1688, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Joey Wenling Yang & Jerry Parwada, 2012. "Predicting stock price movements: an ordered probit analysis on the Australian Securities Exchange," Quantitative Finance, Taylor & Francis Journals, vol. 12(5), pages 791-804, October.
- Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
- Robert F. Engle, 2000.
"The Econometrics of Ultra-High Frequency Data,"
Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
- Robert F. Engle, 1996. "The Econometrics of Ultra-High Frequency Data," NBER Working Papers 5816, National Bureau of Economic Research, Inc.
- Alfonso Dufour & Robert F. Engle, 2000.
"Time and the Price Impact of a Trade,"
Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
- Dufour, Alfonso & Engle, Robert F, 1999. "Time and the Price Impact of a Trade," University of California at San Diego, Economics Working Paper Series qt62c0h04j, Department of Economics, UC San Diego.
- Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
- Tina Hviid Rydberg & Neil Shephard, 2003.
"Dynamics of Trade-by-Trade Price Movements: Decomposition and Models,"
Journal of Financial Econometrics, Oxford University Press, vol. 1(1), pages 2-25.
- Tina Hviid Rydberg & Neil Shephard, 2002. "Dynamics of trade-by-trade price movements: decomposition and models," Economics Papers 2002-W1, Economics Group, Nuffield College, University of Oxford.
- Tina Hviid Rydberg & Neil Shephard, 2002. "Dynamics of trade-by-trade price movements: decomposition and models," OFRC Working Papers Series 2002fe04, Oxford Financial Research Centre.
- GRAMMIG , Joachim & WELLNER, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," LIDAM Reprints CORE 1534, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Yacine Ait--Sahalia & Per A. Mykland, 2003.
"The Effects of Random and Discrete Sampling when Estimating Continuous--Time Diffusions,"
Econometrica, Econometric Society, vol. 71(2), pages 483-549, March.
- Yacine Ait-Sahalia & Per A. Mykland, 2002. "The Effects of Random and Discrete Sampling When Estimating Continuous-Time Diffusions," NBER Technical Working Papers 0276, National Bureau of Economic Research, Inc.
- Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
- Renault, Eric & Werker, Bas J.M., 2011. "Causality effects in return volatility measures with random times," Journal of Econometrics, Elsevier, vol. 160(1), pages 272-279, January.
- Liu, Chun & Maheu, John M., 2012. "Intraday dynamics of volatility and duration: Evidence from Chinese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 329-348.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998.
"Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
- Sangjoon Kim, Neil Shephard & Siddhartha Chib, "undated". "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, University Library of Munich, Germany.
- Luc Bauwens & Pierre Giot, 2000.
"The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks,"
Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
- BAUWENS, Luc & GIOT, Pierre, 2000. "The logarithmic ACD model: an application to the bid-ask quote process of three NYSE stocks," LIDAM Reprints CORE 1497, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
- Admati, Anat R & Pfleiderer, Paul, 1989. "Divide and Conquer: A Theory of Intraday and Day-of-the-Week Mean Effects," The Review of Financial Studies, Society for Financial Studies, vol. 2(2), pages 189-223.
- Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
- repec:bla:jfinan:v:43:y:1988:i:4:p:841-65 is not listed on IDEAS
- Roy A. Fletcher, 1995. "The Role Of Information And The Time Between Trades: An Empirical Investigation," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 18(2), pages 239-260, June.
- Dimitrakopoulos, Stefanos & Dey, Dipak K., 2017. "Discrete-response state space models with conditional heteroscedasticity: An application to forecasting the federal funds rate target," Economics Letters, Elsevier, vol. 154(C), pages 20-23.
- Jonathan R. Stroud & Michael S. Johannes, 2014. "Bayesian Modeling and Forecasting of 24-Hour High-Frequency Volatility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1368-1384, December.
- Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
- Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
- Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
- Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004.
"Stochastic volatility duration models,"
Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
- Eric Ghysels & Christian Gourieroux & Joanna Jasiak, 1997. "Stochastic Volatility Duration Models," Working Papers 97-46, Center for Research in Economics and Statistics.
- Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
- Joel Hasbrouck, 1999. "The Dynamics of Discrete Bid and Ask Quotes," Journal of Finance, American Finance Association, vol. 54(6), pages 2109-2142, December.
- Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
- Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
- Harris, Lawrence, 1990. "Estimation of Stock Price Variances and Serial Covariances from Discrete Observations," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(3), pages 291-306, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
- Yogo Purwono & Irwan Adi Ekaputra & Zaäfri Ananto Husodo, 2018. "Estimation of Dynamic Mixed Hitting Time Model Using Characteristic Function Based Moments," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 295-321, February.
- Liu, Chun & Maheu, John M., 2012. "Intraday dynamics of volatility and duration: Evidence from Chinese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 329-348.
- Chun Liu & John M Maheu, 2010. "Intraday Dynamics of Volatility and Duration: Evidence from the Chinese Stock Market," Working Papers tecipa-401, University of Toronto, Department of Economics.
- Renault, Eric & van der Heijden, Thijs & Werker, Bas J.M., 2014. "The dynamic mixed hitting-time model for multiple transaction prices and times," Journal of Econometrics, Elsevier, vol. 180(2), pages 233-250.
- Fernandes, Marcelo & Grammig, Joachim, 2005.
"Nonparametric specification tests for conditional duration models,"
Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
- Fernandes, M. & Grammig, J., 2000. "Non-Parametric Specification Tests for Conditional Duration Models," Economics Working Papers eco2000/4, European University Institute.
- Marcelo Fernandes & Joachim Grammig, 2000. "Non-Parametric Specification Tests For Conditional Duration Models," Computing in Economics and Finance 2000 40, Society for Computational Economics.
- Fernandes, Marcelo & Grammig, Joachim, 2003. "Nonparametric specification tests for conditional duration models," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 502, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Stanislav Anatolyev & Dmitry Shakin, 2006.
"Trade intensity in the Russian stock market:dynamics, distribution and determinants,"
Working Papers
w0070, Center for Economic and Financial Research (CEFIR).
- Stanislav Anatolyev & Dmitry Shakin, 2006. "Trade intensity in the Russian stock market:dynamics, distribution and determinants," Working Papers w0070, New Economic School (NES).
- Chen, Tao & Li, Jie & Cai, Jun, 2008. "Information content of inter-trade time on the Chinese market," Emerging Markets Review, Elsevier, vol. 9(3), pages 174-193, September.
- Roman Huptas, 2016. "The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 1-20, March.
- Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
- Hautsch, Nikolaus, 2008.
"Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model,"
Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
- Hautsch, Nikolaus, 2007. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," SFB 649 Discussion Papers 2007-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Hautsch, Nikolaus, 2007. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," CFS Working Paper Series 2007/25, Center for Financial Studies (CFS).
- Magdalena Osinska & Andrzej Dobrzynski & Yochanan Shachmurove, 2016. "Performance Of American And Russian Joint Stock Companies On Financial Market. A Microstructure Perspective," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(4), pages 819-851, December.
- Wei Sun & Svetlozar Rachev & Frank Fabozzi & Petko Kalev, 2008. "Fractals in trade duration: capturing long-range dependence and heavy tailedness in modeling trade duration," Annals of Finance, Springer, vol. 4(2), pages 217-241, March.
- Kul B. Luintel & Yongdeng Xu, 2017.
"Testing weak exogeneity in multiplicative error models,"
Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1617-1630, October.
- Luintel, Kul B & Xu, Yongdeng, 2013. "Testing weak exogeneity in multiplicative error models," Cardiff Economics Working Papers E2013/6, Cardiff University, Cardiff Business School, Economics Section.
- Luc, BAUWENS & Nikolaus, HAUTSCH, 2006.
"Modelling Financial High Frequency Data Using Point Processes,"
Discussion Papers (ECON - Département des Sciences Economiques)
2006039, Université catholique de Louvain, Département des Sciences Economiques.
- BAUWENS, Luc & HAUTSCH, Nikolaus, 2009. "Modelling financial high frequency data using point processes," LIDAM Reprints CORE 2123, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, Luc & Hautsch, Nikolaus, 2007. "Modelling financial high frequency data using point processes," SFB 649 Discussion Papers 2007-066, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- BAUWENS, Luc & HAUTSCH, Nikolaus, 2006. "Modelling financial high frequency data using point processes," LIDAM Discussion Papers CORE 2006080, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- N. Taylor & Y. Xu, 2017.
"The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data,"
Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
- Taylor, Nick & Xu, Yongdeng, 2013. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Cardiff Economics Working Papers E2013/7, Cardiff University, Cardiff Business School, Economics Section.
- Manganelli, Simone, 2005.
"Duration, volume and volatility impact of trades,"
Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
- Manganelli, Simone, 2002. "Duration, volume and volatility impact of trades," Working Paper Series 125, European Central Bank.
- Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2008.
"Scaling in the distribution of intertrade durations of Chinese stocks,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(23), pages 5818-5825.
- Zhi-Qiang Jiang & Wei Chen & Wei-Xing Zhou, 2008. "Scaling in the distribution of intertrade durations of Chinese stocks," Papers 0804.3431, arXiv.org, revised Apr 2008.
- Dungey, Mardi & Henry, Olan & McKenzie, Michael, 2010. "From Trade-to-Trade in US Treasuries," Working Papers 10446, University of Tasmania, Tasmanian School of Business and Economics, revised 01 May 2010.
- Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
- Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009.
"Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange,"
Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
- Georges Dionne & Pierre Duchesne & Maria Pacurar, 2005. "Intraday Value at Risk (IVaR) Using Tick-by-Tick Data with Application to the Toronto Stock Exchange," Cahiers de recherche 0533, CIRPEE.
- Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2005. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Working Papers 05-9, HEC Montreal, Canada Research Chair in Risk Management.
More about this item
Keywords
Ordinal-response models; irregularly spaced data; stochastic conditional duration; time varying ARMA-SV model; Bayesian MCMC; model confidence set.;All these keywords.
JEL classification:
- C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
- C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
- C5 - Mathematical and Quantitative Methods - - Econometric Modeling
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2020-10-26 (Econometrics)
- NEP-ETS-2020-10-26 (Econometric Time Series)
- NEP-FOR-2020-10-26 (Forecasting)
- NEP-MST-2020-10-26 (Market Microstructure)
- NEP-ORE-2020-10-26 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:103250. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.