IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model

  • Hautsch, Nikolaus

We model high-frequency trading processes by a multivariate multiplicative error model that is driven by component-specific observation driven dynamics as well as a common latent autoregressive factor. The model is estimated using efficient importance sampling techniques. Applying the model to 5Â min return volatilities, trade sizes and trading intensities from four liquid stocks traded at the NYSE, we show that a subordinated common process drives the individual components and captures a substantial part of the dynamics and cross-dependencies of the variables. Common shocks mainly affect the return volatility and the trade size. Moreover, we identify effects that capture rather genuine relationships between the individual trading variables.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0165-1889(08)00077-8
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Economic Dynamics and Control.

Volume (Year): 32 (2008)
Issue (Month): 12 (December)
Pages: 3978-4015

as
in new window

Handle: RePEc:eee:dyncon:v:32:y:2008:i:12:p:3978-4015
Contact details of provider: Web page: http://www.elsevier.com/locate/jedc

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," CORE Discussion Papers 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
  3. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Working Papers 12690, National Bureau of Economic Research, Inc.
  4. BAUWENS, Luc & GALLI, Fausto & GIOT, Pierre, 2003. "The moments of Log-ACD models," CORE Discussion Papers 2003011, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  5. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-78, December.
  6. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
  7. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
  8. Jones, Charles M. & Kaul, Gautam & Lipson, Marc L., 1994. "Information, trading, and volatility," Journal of Financial Economics, Elsevier, vol. 36(1), pages 127-154, August.
  9. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  10. Lamoureux, Christopher G & Lastrapes, William D, 1990. " Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-29, March.
  11. Huang, Roger D. & Masulis, Ronald W., 2003. "Trading activity and stock price volatility: evidence from the London Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 249-269, May.
  12. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
  13. Robert F. Engle, 1996. "The Econometrics of Ultra-High Frequency Data," NBER Working Papers 5816, National Bureau of Economic Research, Inc.
  14. Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model For Volatility Using Intra-Daily Data," Econometrics Working Papers Archive wp2003_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  15. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
  16. Chan, Kalok & Fong, Wai-Ming, 2000. "Trade size, order imbalance, and the volatility-volume relation," Journal of Financial Economics, Elsevier, vol. 57(2), pages 247-273, August.
  17. Epps, Thomas W & Epps, Mary Lee, 1976. "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis," Econometrica, Econometric Society, vol. 44(2), pages 305-21, March.
  18. Liesenfeld, Roman, 1998. "Dynamic Bivariate Mixture Models: Modeling the Behavior of Prices and Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 101-09, January.
  19. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
  20. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
  21. Fernandes, Marcelo & Grammig, Joachim, 2002. "A Family of Autoregressive Conditional Duration Models," Economics Working Papers (Ensaios Economicos da EPGE) 440, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  22. Easley, David, et al, 1996. " Liquidity, Information, and Infrequently Traded Stocks," Journal of Finance, American Finance Association, vol. 51(4), pages 1405-36, September.
  23. Clive G. Bowsher, 2005. "Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models," Economics Papers 2005-W26, Economics Group, Nuffield College, University of Oxford.
  24. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
  25. Liesenfeld, Roman, 2001. "A generalized bivariate mixture model for stock price volatility and trading volume," Journal of Econometrics, Elsevier, vol. 104(1), pages 141-178, August.
  26. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  27. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
  28. Meddahi, N. & Renault, E. & Werker, B.J.M., 2003. "GARCH and Irregularly Spaced Data," Discussion Paper 2003-27, Tilburg University, Center for Economic Research.
  29. Renault, E. & Werker, B.J.M., 2004. "Stochatic Volatility Models with Transaction Time Risk," Discussion Paper 2004-24, Tilburg University, Center for Economic Research.
  30. Jean-Francois Richard, 2007. "Efficient High-Dimensional Importance Sampling," Working Papers 321, University of Pittsburgh, Department of Economics, revised Jan 2007.
  31. Luc Bauwens & Nikolaus Hautsch, 2006. "Stochastic Conditional Intensity Processes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 450-493.
  32. Lawrence R. Glosten & Paul R. Milgrom, 1983. "Bid, Ask and Transaction Prices in a Specialist Market with Heterogeneously Informed Traders," Discussion Papers 570, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  33. Nikolaus Hautsch, 2006. "Testing the Conditional Mean Function of Autoregressive Conditional Duration Models," FRU Working Papers 2006/06, University of Copenhagen. Department of Economics. Finance Research Unit.
  34. Easley, David & O'Hara, Maureen, 1992. " Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
  35. Hasbrouck, Joel, 1991. " Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
  36. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. " Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-81, March.
  37. Thierry Ané & Hélyette Geman, 2000. "Order Flow, Transaction Clock, and Normality of Asset Returns," Journal of Finance, American Finance Association, vol. 55(5), pages 2259-2284, October.
  38. Andersen, Torben G, 1996. " Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
  39. Bollerslev, Tim & Jubinski, Dan, 1999. "Equity Trading Volume and Volatility: Latent Information Arrivals and Common Long-Run Dependencies," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 9-21, January.
  40. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
  41. Foucault, Thierry, 1999. "Order flow composition and trading costs in a dynamic limit order market1," Journal of Financial Markets, Elsevier, vol. 2(2), pages 99-134, May.
  42. Xu, Xiaoqing Eleanor & Wu, Chunchi, 1999. "The intraday relation between return volatility, transactions, and volume," International Review of Economics & Finance, Elsevier, vol. 8(4), pages 375-397, November.
  43. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:32:y:2008:i:12:p:3978-4015. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.