IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v34y2015i4p480-511.html
   My bibliography  Save this article

Time-Deformation Modeling of Stock Returns Directed by Duration Processes

Author

Listed:
  • Dingan Feng
  • Peter X.-K. Song
  • Tony S. Wirjanto

Abstract

This paper proposes a new time-deformation model for stock returns sampled in transaction time and directed by a generalized duration process. Stochastic volatility in this model is driven by an observed duration process and a latent autoregressive process. Parameter estimation in the model is carried out by using a method of simulated moments (MSM) due to its analytical tractability and numerical stability for the proposed model. Simulations are conducted to validate the choice of moments used in the formulation of MSM. Both simulation and empirical results indicate that the proposed MSM works well for the model. The main empirical findings from the analysis of IBM transaction return data include: (i) the return distribution conditional on the duration process is not Gaussian, even though the duration process itself can marginally serve as a directing process; (ii) the return process is highly leveraged; (iii) longer trade duration tends to be associated with higher return volatility; and (iv) the proposed model is capable of reproducing a return process whose marginal density function is close to that of the empirical return process.

Suggested Citation

  • Dingan Feng & Peter X.-K. Song & Tony S. Wirjanto, 2015. "Time-Deformation Modeling of Stock Returns Directed by Duration Processes," Econometric Reviews, Taylor & Francis Journals, vol. 34(4), pages 480-511, April.
  • Handle: RePEc:taf:emetrv:v:34:y:2015:i:4:p:480-511
    DOI: 10.1080/07474938.2013.808478
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2013.808478
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2013.808478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    3. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    4. Dinghai Xu & John Knight & Tony S. Wirjanto, 2011. "Asymmetric Stochastic Conditional Duration Model--A Mixture-of-Normal Approach," Journal of Financial Econometrics, Oxford University Press, vol. 9(3), pages 469-488, Summer.
    5. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
    6. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    7. Joel Hasbrouck, 1999. "Trading Fast and Slow: Security Market Events in Real Time," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-012, New York University, Leonard N. Stern School of Business-.
    8. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Oxford University Press, vol. 3(4), pages 456-499.
    9. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    10. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
    11. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    12. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    13. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    14. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    15. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," LIDAM Discussion Papers CORE 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    17. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    18. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
    19. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    20. John Knight & Cathy Q. Ning, 2008. "Estimation of the stochastic conditional duration model via alternative methods," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 593-616, November.
    21. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    22. Harris, Lawrence, 1991. "Stock Price Clustering and Discreteness," Review of Financial Studies, Society for Financial Studies, vol. 4(3), pages 389-415.
    23. GRAMMIG , Joachim & WELLNER, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," LIDAM Reprints CORE 1534, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    24. Dingan Feng, 2004. "Stochastic Conditional Duration Models with "Leverage Effect" for Financial Transaction Data," Journal of Financial Econometrics, Oxford University Press, vol. 2(3), pages 390-421.
    25. Renault, E. & Werker, B.J.M., 2004. "Stochatic Volatility Models with Transaction Time Risk," Discussion Paper 2004-24, Tilburg University, Center for Economic Research.
    26. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
    27. Black, Fischer, 1972. "Capital Market Equilibrium with Restricted Borrowing," The Journal of Business, University of Chicago Press, vol. 45(3), pages 444-455, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
    2. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    3. Xiufeng Yan, 2021. "Multiplicative Component GARCH Model of Intraday Volatility," Papers 2111.02376, arXiv.org.
    4. Dingan Feng & Peter X.-K. Song & Tony S. Wirjanto, 2008. "Time-Deformation Modeling Of Stock Returns Directed By Duration Processes," Working Papers 08010, University of Waterloo, Department of Economics.
    5. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    6. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    7. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    8. Magdalena Osinska & Andrzej Dobrzynski & Yochanan Shachmurove, 2016. "Performance Of American And Russian Joint Stock Companies On Financial Market. A Microstructure Perspective," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(4), pages 819-851, December.
    9. N. Taylor & Y. Xu, 2017. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Quantitative Finance, Taylor & Francis Journals, vol. 17(7), pages 1021-1035, July.
    10. Karaa, Rabaa & Slim, Skander & Hmaied, Dorra Mezzez, 2018. "Trading intensity and the volume-volatility relationship on the Tunis Stock Exchange," Research in International Business and Finance, Elsevier, vol. 44(C), pages 88-99.
    11. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    12. Katarzyna Bien-Barkowska, 2012. ""Does it take volume to move fx rates?" Evidence from quantile regressions," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 12, pages 35-52.
    13. Clive Bowsher, 2004. "Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Model," Economics Series Working Papers 2003-W03, University of Oxford, Department of Economics.
    14. Dimitrakopoulos, Stefanos & Tsionas, Mike G. & Aknouche, Abdelhakim, 2020. "Ordinal-response models for irregularly spaced transactions: A forecasting exercise," MPRA Paper 103250, University Library of Munich, Germany, revised 01 Oct 2020.
    15. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    16. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    17. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    18. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
    19. Kul B. Luintel & Yongdeng Xu, 2017. "Testing weak exogeneity in multiplicative error models," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1617-1630, October.
    20. Stanislav Anatolyev & Dmitry Shakin, 2006. "Trade intensity in the Russian stock market:dynamics, distribution and determinants," Working Papers w0070, Center for Economic and Financial Research (CEFIR).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:34:y:2015:i:4:p:480-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.