IDEAS home Printed from https://ideas.repec.org/p/cdf/wpaper/2013-7.html
   My bibliography  Save this paper

The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data

Author

Listed:

Abstract

We develop a general form logarithmic vector multiplicative error model (log-vMEM). The log-vMEM improves on existing models in two ways. First, it is a more general form model as it allows the error terms to be cross-dependent and relaxes weak exogeneity restrictions. Second, the log-vMEM specification guarantees that the conditional means are non-negative without any restrictions imposed on the parameters. We further propose a multivariate lognormal distribution and a joint maximum likelihood estimation strategy. The model is applied to high frequency data associated with a number of NYSE-listed stocks. The results reveal empirical support for full interdependence of trading duration, volume and volatility, with the log-vMEM providing a better fit to the data than a competing model. Moreover, we find that unexpected duration and volume dominate observed duration and volume in terms of information content, and that volatility and volatility shocks affect duration in different directions. These results are interpreted with reference to extant microstructure theory.

Suggested Citation

  • Taylor, Nick & Xu, Yongdeng, 2013. "The logarithmic vector multiplicative error model: an application to high frequency NYSE stock data," Cardiff Economics Working Papers E2013/7, Cardiff University, Cardiff Business School, Economics Section.
  • Handle: RePEc:cdf:wpaper:2013/7
    as

    Download full text from publisher

    File URL: http://carbsecon.com/wp/E2013_7.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    2. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    3. Taylor, Nicholas, 2004. "Trading intensity, volatility, and arbitrage activity," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 1137-1162, May.
    4. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    5. Hasbrouck, Joel, 1988. "Trades, quotes, inventories, and information," Journal of Financial Economics, Elsevier, vol. 22(2), pages 229-252, December.
    6. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    7. GRAMMIG , Joachim & WELLNER, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," LIDAM Reprints CORE 1534, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    9. Nikolaus Hautsch & Peter Malec & Melanie Schienle, 2014. "Capturing the Zero: A New Class of Zero-Augmented Distributions and Multiplicative Error Processes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 12(1), pages 89-121.
    10. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
    11. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
    12. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2007. "A Model for Multivariate Non-negative Valued Processes in Financial Econometrics," Econometrics Working Papers Archive wp2007_16, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    13. French, Kenneth R. & Roll, Richard, 1986. "Stock return variances : The arrival of information and the reaction of traders," Journal of Financial Economics, Elsevier, vol. 17(1), pages 5-26, September.
    14. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    15. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    16. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    17. Allen, David & Chan, Felix & McAleer, Michael & Peiris, Shelton, 2008. "Finite sample properties of the QMLE for the Log-ACD model: Application to Australian stocks," Journal of Econometrics, Elsevier, vol. 147(1), pages 163-185, November.
    18. repec:adr:anecst:y:2000:i:60 is not listed on IDEAS
    19. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
    20. Robert F. Engle & Asger Lunde, 2003. "Trades and Quotes: A Bivariate Point Process," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(2), pages 159-188.
    21. Robert F. Engle & Giampiero M. Gallo & Margherita Velucchi, 2012. "Volatility Spillovers in East Asian Financial Markets: A Mem-Based Approach," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 222-223, February.
    22. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    23. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    24. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    25. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    26. Tomoaki Nakatani & Timo Terasvirta, 2009. "Testing for volatility interactions in the Constant Conditional Correlation GARCH model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 147-163, March.
    27. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    28. Diamond, Douglas W. & Verrecchia, Robert E., 1987. "Constraints on short-selling and asset price adjustment to private information," Journal of Financial Economics, Elsevier, vol. 18(2), pages 277-311, June.
    29. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715, December.
    30. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    31. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
    32. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    33. Andersen, Torben G. & Sorensen, Bent E., 1997. "GMM and QML asymptotic standard deviations in stochastic volatility models: Comments on Ruiz (1994)," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 397-403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuehai Zhang, 2019. "A Box-Cox semiparametric multiplicative error model," Working Papers CIE 122, Paderborn University, CIE Center for International Economics.
    2. Cipollini, Fabrizio & Gallo, Giampiero M. & Otranto, Edoardo, 2021. "Realized volatility forecasting: Robustness to measurement errors," International Journal of Forecasting, Elsevier, vol. 37(1), pages 44-57.
    3. Fabrizio Cipollini & Giampiero M Gallo & Alessandro Palandri, 2020. "Realized Variance Modeling: Decoupling Forecasting from Estimation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 18(3), pages 532-555.
    4. Xuehai Zhang, 2019. "A Box-Cox semiparametric multiplicative error model," Working Papers CIE 125, Paderborn University, CIE Center for International Economics.
    5. Carol Alexander & Daniel Heck & Andreas Kaeck, 2021. "The Role of Binance in Bitcoin Volatility Transmission," Papers 2107.00298, arXiv.org, revised Aug 2021.
    6. Donelli, Nicola & Peluso, Stefano & Mira, Antonietta, 2021. "A Bayesian semiparametric vector Multiplicative Error Model," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    7. Karanasos, Menelaos & Xu, Yongdeng, 2017. "Matrix Inequality Constraints for Vector (Asymmetric Power) GARCH/HEAVY Models and MEM with spillovers: some New (Mixture) Formulations," Cardiff Economics Working Papers E2017/14, Cardiff University, Cardiff Business School, Economics Section.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kul B. Luintel & Yongdeng Xu, 2017. "Testing weak exogeneity in multiplicative error models," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1617-1630, October.
    2. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
    3. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    4. Chen, Tao & Li, Jie & Cai, Jun, 2008. "Information content of inter-trade time on the Chinese market," Emerging Markets Review, Elsevier, vol. 9(3), pages 174-193, September.
    5. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    6. Stanislav Anatolyev & Dmitry Shakin, 2007. "Trade intensity in the Russian stock market: dynamics, distribution and determinants," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 87-104.
    7. repec:zbw:cfswop:wp200725 is not listed on IDEAS
    8. Yang, Joey Wenling, 2011. "Transaction duration and asymmetric price impact of trades--Evidence from Australia," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 91-102, January.
    9. Iordanis Kalaitzoglou & Boulis Maher Ibrahim, 2010. "Does Order Flow in the European Carbon Allowances Market Reveal Information?," CFI Discussion Papers 1003, Centre for Finance and Investment, Heriot Watt University.
    10. Sylwia Nowak, 2008. "How Do Public Announcements Affect The Frequency Of Trading In U.S. Airline Stocks?," CAMA Working Papers 2008-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Jun (Tony) Ruan & Tongshu Ma, 2017. "Bid-Ask Spread, Quoted Depths, and Unexpected Duration Between Trades," Journal of Financial Services Research, Springer;Western Finance Association, vol. 51(3), pages 385-436, June.
    12. Trojan, Sebastian, 2014. "Modeling Intraday Stochastic Volatility and Conditional Duration Contemporaneously with Regime Shifts," Economics Working Paper Series 1425, University of St. Gallen, School of Economics and Political Science.
    13. Kalaitzoglou, Iordanis & Ibrahim, Boulis M., 2013. "Does order flow in the European Carbon Futures Market reveal information?," Journal of Financial Markets, Elsevier, vol. 16(3), pages 604-635.
    14. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
    15. Karanasos, Menelaos & Xu, Yongdeng, 2017. "Matrix Inequality Constraints for Vector (Asymmetric Power) GARCH/HEAVY Models and MEM with spillovers: some New (Mixture) Formulations," Cardiff Economics Working Papers E2017/14, Cardiff University, Cardiff Business School, Economics Section.
    16. Bowe, Michael & Hyde, Stuart & McFarlane, Lavern, 2013. "Duration, trading volume and the price impact of trades in an emerging futures market," Emerging Markets Review, Elsevier, vol. 17(C), pages 89-105.
    17. Wong, Woon K. & Tan, Dijun & Tian, Yixiang, 2009. "Informed trading and liquidity in the Shanghai Stock Exchange," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 66-73, March.
    18. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Multiplicative Error Models," Econometrics Working Papers Archive 2011_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Apr 2011.
    19. Dingan Feng & Peter X.-K. Song & Tony S. Wirjanto, 2015. "Time-Deformation Modeling of Stock Returns Directed by Duration Processes," Econometric Reviews, Taylor & Francis Journals, vol. 34(4), pages 480-511, April.
    20. Perera, Indeewara & Silvapulle, Mervyn J., 2021. "Bootstrap based probability forecasting in multiplicative error models," Journal of Econometrics, Elsevier, vol. 221(1), pages 1-24.

    More about this item

    Keywords

    vMEM; ACD; Intraday trading process; Duration; Volume; Volatility;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdf:wpaper:2013/7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/ecscfuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Yongdeng Xu (email available below). General contact details of provider: https://edirc.repec.org/data/ecscfuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.