IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Multiplicative Error Models

Financial time series analysis has focused on data related to market trading activity. Next to the modeling of the conditional variance of returns within the GARCH family of models, recent attention has been devoted to other variables: first, and foremost, volatility measured on the basis of ultra-high frequency data, but also volumes, number of trades, durations. In this paper, we examine a class of models, named Multiplicative Error Models, which are particularly suited to model such non-negative time series. We discuss the univariate specification, by considering the base choices for the conditional expectation and the error term. We provide also a general framework, allowing for richer specifications of the conditional mean. The outcome is a novel MEM (called Composite MEM) which is reminiscent of the short- and long-run component GARCH model by Engle and Lee (1999). Inference issues are discussed relative to Maximum Likelihood and Generalized Method of Moments estimation. In the application, we show the regularity in parameter estimates and forecasting performance obtainable by applying the MEM to the realized kernel volatility of components of the S&P100 index. We suggest extensions of the base model by enlarging the information set and adopting a multivariate specification.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Revision 2011-04
Download Restriction: no

Paper provided by Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti" in its series Econometrics Working Papers Archive with number 2011_03.

in new window

Length: 26 pages
Date of creation: Feb 2011
Date of revision: Apr 2011
Publication status: Forthcoming in 'Volatility Models and Their Applications' (Luc Bauwens, Christian Hafner, Sebastien Laurent eds.)
Handle: RePEc:fir:econom:wp2011_03
Contact details of provider: Postal: Viale G.B. Morgagni, 59 - I-50134 Firenze - Italy
Phone: +39 055 2751500
Fax: +39 055 4223560
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  2. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  3. Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836, July.
  4. O. E. Barndorff-Nielsen & P. Reinhard Hansen & A. Lunde & N. Shephard, 2009. "Realized kernels in practice: trades and quotes," Econometrics Journal, Royal Economic Society, vol. 12(3), pages C1-C32, November.
  5. Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Economics Working Papers ECO2006/3, European University Institute.
  6. Ahoniemi, Katja & Lanne, Markku, 2007. "Joint Modeling of Call and Put Implied Volatility," MPRA Paper 6318, University Library of Munich, Germany.
  7. L. Bauwens & J. V. K. Rombouts, 2007. "Bayesian Clustering of Many Garch Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 365-386.
  8. Christian FRANCQ & Lajos HORVATH & Jean-Michel ZAKOIAN, 2009. "Merits and Drawbacks of Variance Targeting in GARCH Models," Working Papers 2009-17, Centre de Recherche en Economie et Statistique.
  9. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
  10. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  11. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-82, June.
  12. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Intra-daily Volume Modeling and Prediction for Algorithmic Trading," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(3), pages 489-518, Summer.
  13. Neil Shephard & Kevin Sheppard, 2009. "Realising the future: forecasting with high frequency based volatility (HEAVY) models," Economics Series Working Papers 438, University of Oxford, Department of Economics.
  14. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
  15. Brownlees, C.T. & Gallo, G.M., 2006. "Financial econometric analysis at ultra-high frequency: Data handling concerns," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2232-2245, December.
  16. Nikolaus Hautsch, 2007. "Capturing Common Components in High-Frequency Financial Time Series: A Multivariate Stochastic Multiplicative Error Model," SFB 649 Discussion Papers SFB649DP2007-052, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  17. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
  18. Robert F. Engle & Giampiero M. Gallo, 2003. "A Multiple Indicators Model for Volatility Using Intra-Daily Data," NBER Working Papers 10117, National Bureau of Economic Research, Inc.
  19. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
  20. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
  21. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  22. Peter Reinhard Hansen & Zhuo (Albert) Huang & Howard Howan Shek, . "Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility," CREATES Research Papers 2010-13, School of Economics and Management, University of Aarhus.
  23. Pierre Giot & Sébastien Laurent, 2002. "Modelling Daily Value-at-Risk Using Realized Volatility and ARCH Type Models," Computing in Economics and Finance 2002 52, Society for Computational Economics.
  24. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
  25. Kristensen, Dennis & Linton, Oliver, 2004. "03.5.2. Consistent Standard Errors for Target Variance Approach to GARCH Estimation Solution," Econometric Theory, Cambridge University Press, vol. 20(05), pages 990-993, October.
  26. Christian T. Brownlees & Giampiero Gallo, 2008. "Comparison of Volatility Measures: a Risk Management Perspective," Econometrics Working Papers Archive wp2008_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  27. Nelson, Daniel B & Cao, Charles Q, 1992. "Inequality Constraints in the Univariate GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 229-35, April.
  28. Fabrizio Cipollini & Giampiero M. Gallo, 2009. "Automated Variable Selection in Vector Multiplicative Error Models," Econometrics Working Papers Archive wp2009_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  29. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2007. "A Model for Multivariate Non-negative Valued Processes in Financial Econometrics," Econometrics Working Papers Archive wp2007_16, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  30. Manganelli, Simone, 2002. "Duration, volume and volatility impact of trades," Working Paper Series 0125, European Central Bank.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fir:econom:wp2011_03. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Francesco Calvori)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.