IDEAS home Printed from https://ideas.repec.org/p/fir/econom/wp2012_03.html
   My bibliography  Save this paper

Volatility Swings in the US Financial Markets

Author

Abstract

Empirical evidence shows that the dynamics of high frequency–based measures of volatility exhibit persistence and occasional abrupt changes in the average level. By looking at volatility measures for major indices, we notice similar patterns (including jumps at about the same time), with stronger similarities, the higher the degree of company capitalization represented in the indices. We adopt the recent Markov Switching Asymmetric Multiplicative Error Model to model the dynamics of the conditional expectation of realized volatility. This allows us to address the issues of a slow moving average level of volatility and of different dynamics across regimes. An extension sees a more flexible model combining the characteristics of Markov Switching and smooth transition dynamics.

Suggested Citation

  • Giampiero M. Gallo & Edoardo Otranto, 2012. "Volatility Swings in the US Financial Markets," Econometrics Working Papers Archive 2012_03, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Jul 2012.
  • Handle: RePEc:fir:econom:wp2012_03
    as

    Download full text from publisher

    File URL: http://local.disia.unifi.it/ricerca/pubblicazioni/working_papers/2012/wp2012_03.pdf
    File Function: Revision 2012-07
    Download Restriction: no

    References listed on IDEAS

    as
    1. E. Otranto, 2012. "The Markov Switching Asymmetric Multiplicative Error Model," Working Paper CRENoS 201205, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    2. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    3. Gallo, Giampiero M. & Otranto, Edoardo, 2008. "Volatility spillovers, interdependence and comovements: A Markov Switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3011-3026, February.
    4. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    5. Robert F. Engle & Giampiero M. Gallo & Margherita Velucchi, 2012. "Volatility Spillovers in East Asian Financial Markets: A Mem-Based Approach," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 222-223, February.
    6. Gourieroux, Christian & Monfort, Alain & Renault, Eric & Trognon, Alain, 1987. "Generalised residuals," Journal of Econometrics, Elsevier, vol. 34(1-2), pages 5-32.
    7. Zacharias Psaradakis & Nicola Spagnolo, 2003. "On The Determination Of The Number Of Regimes In Markov-Switching Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 237-252, March.
    8. E. Otranto, 2011. "Classification of Volatility in Presence of Changes in Model Parameters," Working Paper CRENoS 201113, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giampiero M. Gallo & Edoardo Otranto, 2012. "Realized Volatility and Change of Regimes," Econometrics Working Papers Archive 2012_02, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti", revised Jul 2012.

    More about this item

    Keywords

    Multiplicative Error Models; regime switching; realized volatility; volatility persistence; smooth transition;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fir:econom:wp2012_03. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Francesco Calvori). General contact details of provider: http://edirc.repec.org/data/dsfirit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.