IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Joint Modeling of Call and Put Implied Volatility

  • Ahoniemi, Katja
  • Lanne, Markku

This paper exploits the fact that implied volatilities calculated from identical call and put options have often been empirically found to differ, although they should be equal in theory. We propose a new bivariate mixture multiplicative error model and show that it is a good fit to Nikkei 225 index call and put option implied volatility (IV). A good model fit requires two mixture components in the model, allowing for different mean equations and error distributions for calmer and more volatile days. Forecast evaluation indicates that in addition to jointly modeling the time series of call and put IV, cross effects should be added to the model: putside implied volatility helps forecast callside IV, and vice versa. Impulse response functions show that the IV derived from put options recovers faster from shocks, and the effect of shocks lasts for up to six weeks.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://mpra.ub.uni-muenchen.de/6318/1/MPRA_paper_6318.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 6318.

as
in new window

Length:
Date of creation: 2007
Date of revision:
Handle: RePEc:pra:mprapa:6318
Contact details of provider: Postal:
Ludwigstra├če 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page: https://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
  2. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
  3. Pesaran, M.H. & Timmermann, A., 1990. "A Simple Non-Parametric Test Of Predictive Performance," Papers 29, California Los Angeles - Applied Econometrics.
  4. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
  5. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
  6. Ser-Huang Poon & Peter, F. Pope, 2000. "Trading volatility spreads: a test of index option market efficiency," European Financial Management, European Financial Management Association, vol. 6(2), pages 235-260.
  7. Garleanu, Nicolae Bogdan & Pedersen, Lasse Heje & Poteshman, Allen M, 2005. "Demand-Based Option Pricing," CEPR Discussion Papers 5420, C.E.P.R. Discussion Papers.
  8. Andrei Shleifer & Robert W. Vishny, 1995. "The Limits of Arbitrage," NBER Working Papers 5167, National Bureau of Economic Research, Inc.
  9. Lehmann, Bruce N & Modest, David M, 1994. " Trading and Liquidity on the Tokyo Stock Exchange: A Bird's Eye View," Journal of Finance, American Finance Association, vol. 49(3), pages 951-84, July.
  10. Mo, Henry & Wu, Liuren, 2007. "International capital asset pricing: Evidence from options," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 465-498, September.
  11. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  12. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
  13. Bruce N. Lehmann and David M. Modest., 1994. "Trading and Liquidity on the Tokyo Stock Exchange: A Bird's Eye View," Research Program in Finance Working Papers RPF-234, University of California at Berkeley.
  14. Nelson, Daniel B & Cao, Charles Q, 1992. "Inequality Constraints in the Univariate GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 229-35, April.
  15. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
  16. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
  17. Fabrizio Cipollini & Robert F. Engle & Giampiero Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," Econometrics Working Papers Archive wp2006_15, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  18. Jens Carsten Jackwerth, 1998. "Recovering Risk Aversion from Option Prices and Realized Returns," Finance 9803002, EconWPA.
  19. Lanne, Markku, 2007. "Forecasting realized exchange rate volatility by decomposition," International Journal of Forecasting, Elsevier, vol. 23(2), pages 307-320.
  20. Jorion, Philippe, 1995. " Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-28, June.
  21. Chris Brooks & M. Currim Oozeer, 2002. "Modelling the Implied Volatility of Options on Long Gilt Futures," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 29(1&2), pages 111-137.
  22. Pesaran, M Hashem & Timmermann, Allan, 1995. " Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-28, September.
  23. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
  24. Dennis, Patrick & Mayhew, Stewart & Stivers, Chris, 2006. "Stock Returns, Implied Volatility Innovations, and the Asymmetric Volatility Phenomenon," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(02), pages 381-406, June.
  25. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  26. Sanjiv Ranjan Das & Raman Uppal, 2004. "Systemic Risk and International Portfolio Choice," Journal of Finance, American Finance Association, vol. 59(6), pages 2809-2834, December.
  27. Liu, Jun & Longstaff, Francis A, 2000. "Losing Money on Arbitrages: Optimal Dynamic Portfolio Choice in Markets with Arbitrage Opportunities," University of California at Los Angeles, Anderson Graduate School of Management qt48k8f97f, Anderson Graduate School of Management, UCLA.
  28. Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 594-616.
  29. Buraschi, Andrea & Jackwerth, Jens, 2001. "The Price of a Smile: Hedging and Spanning in Option Markets," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 495-527.
  30. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
  31. Nicolas P. B. Bollen & Robert E. Whaley, 2004. "Does Net Buying Pressure Affect the Shape of Implied Volatility Functions?," Journal of Finance, American Finance Association, vol. 59(2), pages 711-753, 04.
  32. Figlewski, Stephen, 1989. " Options Arbitrage in Imperfect Markets," Journal of Finance, American Finance Association, vol. 44(5), pages 1289-1311, December.
  33. Hentschel, Ludger, 2003. "Errors in Implied Volatility Estimation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(04), pages 779-810, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:6318. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.