IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v94y2016icp86-97.html
   My bibliography  Save this article

Diagnostic checking of the vector multiplicative error model

Author

Listed:
  • Ng, F.C.
  • Li, W.K.
  • Yu, Philip L.H.

Abstract

In many situations, we may encounter time series that are non-negative. Examples include trading duration, volume transaction and price volatility in finance, waiting time in a queue in social sciences, and daily/hourly rainfall in natural sciences. The vector multiplicative error model (VMEM) is a natural choice for modeling such time series in a multivariate framework. Despite the popularity and extensive use of the model, very little work has been done on the area of diagnostic checking which however provides useful information about the adequacy of model fitting. In this paper, the asymptotic distribution of residual autocorrelations is derived and used to devise a new multivariate portmanteau test for diagnostic checking. Simulation studies are performed to assess the performance of the asymptotic result in finite samples. An empirical example is also given to demonstrate that the commonly used goodness-of-fit test may lead to a misleading result in the case of the VMEM.

Suggested Citation

  • Ng, F.C. & Li, W.K. & Yu, Philip L.H., 2016. "Diagnostic checking of the vector multiplicative error model," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 86-97.
  • Handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:86-97
    DOI: 10.1016/j.csda.2015.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001693
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
    2. Yongmiao Hong & Yoon‐Jin Lee, 2011. "Detecting misspecifications in autoregressive conditional duration models and non‐negative time‐series processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(1), pages 1-32, January.
    3. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    4. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    5. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    6. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
    7. Yi-Ting Chen, 2010. "Generalized Moment Tests for Autoregressive Conditional Duration Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 8(3), pages 345-391, Summer.
    8. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2007. "A Model for Multivariate Non-negative Valued Processes in Financial Econometrics," Econometrics Working Papers Archive wp2007_16, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    9. Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 594-616.
    10. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    11. Li, W. K. & Yu, Philip L. H., 2003. "On the residual autocorrelation of the autoregressive conditional duration model," Economics Letters, Elsevier, vol. 79(2), pages 169-175, May.
    12. Ahoniemi, Katja & Lanne, Markku, 2009. "Joint modeling of call and put implied volatility," International Journal of Forecasting, Elsevier, vol. 25(2), pages 239-258.
    13. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    14. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
    15. Meitz, Mika & Terasvirta, Timo, 2006. "Evaluating Models of Autoregressive Conditional Duration," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 104-124, January.
    16. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
    17. Koul, Hira L. & Perera, Indeewara & Silvapulle, Mervyn J., 2012. "Lack-Of-Fit Testing Of The Conditional Mean Function In A Class Of Markov Multiplicative Error Models," Econometric Theory, Cambridge University Press, vol. 28(06), pages 1283-1312, December.
    18. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:94:y:2016:i:c:p:86-97. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.