IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model

  • Hautsch, Nikolaus

We introduce a multivariate multiplicative error model which is driven by componentspecific observation driven dynamics as well as a common latent autoregressive factor. The model is designed to explicitly account for (information driven) common factor dynamics as well as idiosyncratic effects in the processes of highfrequency return volatilities, trade sizes and trading intensities. The model is estimated by simulated maximum likelihood using efficient importance sampling. Analyzing five minutes data from four liquid stocks traded at the New York Stock Exchange, we find that volatilities, volumes and intensities are driven by idiosyncratic dynamics as well as a highly persistent common factor capturing most causal relations and cross-dependencies between the individual variables. This confirms economic theory and suggests more parsimonious specifications of high-dimensional trading processes. It turns out that common shocks affect the return volatility and the trading volume rather than the trading intensity.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://econstor.eu/bitstream/10419/25526/1/548222150.PDF
Download Restriction: no

Paper provided by Center for Financial Studies (CFS) in its series CFS Working Paper Series with number 2007/25.

as
in new window

Length:
Date of creation: 2007
Date of revision:
Handle: RePEc:zbw:cfswop:200725
Contact details of provider: Postal:
House of Finance, Grüneburgplatz 1, HPF H5, D-60323 Frankfurt am Main

Phone: +49 (0)69 798-30050
Fax: +49 (0)69 798-30077
Web page: http://www.ifk-cfs.de/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Engle, Robert F. & Gallo, Giampiero M., 2006. "A multiple indicators model for volatility using intra-daily data," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 3-27.
  2. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
  3. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
  4. BAUWENS, Luc & GALLi, Fausto & GIOT, Pierre, . "The moments of Log-ACD models," CORE Discussion Papers RP 2023, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  5. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
  6. Fabrizio Cipollini & Robert F. Engle & Giampiero Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," Econometrics Working Papers Archive wp2006_15, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
  7. Lawrence R. Glosten & Paul R. Milgrom, 1983. "Bid, Ask and Transaction Prices in a Specialist Market with Heterogeneously Informed Traders," Discussion Papers 570, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  8. Renault, E. & Werker, B.J.M., 2004. "Stochatic Volatility Models with Transaction Time Risk," Discussion Paper 2004-24, Tilburg University, Center for Economic Research.
  9. Lamoureux, Christopher G & Lastrapes, William D, 1990. " Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-29, March.
  10. Liesenfeld, Roman, 1998. "Dynamic Bivariate Mixture Models: Modeling the Behavior of Prices and Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 101-09, January.
  11. Jones, Charles M. & Kaul, Gautam & Lipson, Marc L., 1994. "Information, trading, and volatility," Journal of Financial Economics, Elsevier, vol. 36(1), pages 127-154, August.
  12. Hasbrouck, Joel, 1991. " Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
  13. Chan, Kalok & Fong, Wai-Ming, 2000. "Trade size, order imbalance, and the volatility-volume relation," Journal of Financial Economics, Elsevier, vol. 57(2), pages 247-273, August.
  14. Dufour, Alfonso & Engle, Robert F, 1999. "Time and the Price Impact of a Trade," University of California at San Diego, Economics Working Paper Series qt62c0h04j, Department of Economics, UC San Diego.
  15. Bollerslev, Tim & Jubinski, Dan, 1999. "Equity Trading Volume and Volatility: Latent Information Arrivals and Common Long-Run Dependencies," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(1), pages 9-21, January.
  16. FERNANDES, Marcelo & GRAMMIG, Joachim, 2001. "A family of autoregressive conditional duration models," CORE Discussion Papers 2001036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  17. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
  18. BAUWENS, Luc & HAUTSCH, Nikolaus, . "Stochastic conditional intensity processes," CORE Discussion Papers RP 1937, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  19. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
  20. Huang, Roger D. & Masulis, Ronald W., 2003. "Trading activity and stock price volatility: evidence from the London Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 249-269, May.
  21. Meddahi, N. & Renault, E. & Werker, B.J.M., 2003. "GARCH and Irregularly Spaced Data," Discussion Paper 2003-27, Tilburg University, Center for Economic Research.
  22. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," CORE Discussion Papers 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  23. Foucault, Thierry, 1999. "Order flow composition and trading costs in a dynamic limit order market1," Journal of Financial Markets, Elsevier, vol. 2(2), pages 99-134, May.
  24. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. " Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-81, March.
  25. Thierry Ané & Hélyette Geman, 2000. "Order Flow, Transaction Clock, and Normality of Asset Returns," Journal of Finance, American Finance Association, vol. 55(5), pages 2259-2284, October.
  26. Andersen, Torben G, 1996. " Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
  27. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
  28. Xu, Xiaoqing Eleanor & Wu, Chunchi, 1999. "The intraday relation between return volatility, transactions, and volume," International Review of Economics & Finance, Elsevier, vol. 8(4), pages 375-397, November.
  29. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
  30. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
  31. Easley, David, et al, 1996. " Liquidity, Information, and Infrequently Traded Stocks," Journal of Finance, American Finance Association, vol. 51(4), pages 1405-36, September.
  32. Easley, David & O'Hara, Maureen, 1992. " Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
  33. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  34. Eric Ghysels & Christian Gourieroux & Joanna Jasiak, 1997. "Stochastic Volatility Duration Models," Working Papers 97-46, Centre de Recherche en Economie et Statistique.
  35. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
  36. Liesenfeld, Roman, 2001. "A generalized bivariate mixture model for stock price volatility and trading volume," Journal of Econometrics, Elsevier, vol. 104(1), pages 141-178, August.
  37. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
  38. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
  39. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-78, December.
  40. Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
  41. Epps, Thomas W & Epps, Mary Lee, 1976. "The Stochastic Dependence of Security Price Changes and Transaction Volumes: Implications for the Mixture-of-Distributions Hypothesis," Econometrica, Econometric Society, vol. 44(2), pages 305-21, March.
  42. Nikolaus Hautsch, 2006. "Testing the Conditional Mean Function of Autoregressive Conditional Duration Models," FRU Working Papers 2006/06, University of Copenhagen. Department of Economics. Finance Research Unit.
  43. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:200725. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.