IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/ws097924.html
   My bibliography  Save this paper

The econometrics of randomly spaced financial data: a survey

Author

Listed:
  • Monteiro, André A.

Abstract

This paper provides an introduction to the problem of modeling randomly spaced longitudinal data. Although Point Process theory was developed mostly in the sixties and early seventies, only in the nineties did this field of Probability theory attract the attention of researchers working in Financial Econometrics. The large increase, observed since, in the number of different classes of Econometric models for dealing with financial duration data, has been mostly due to the increased availability of both trade-by-trade data from equity markets and daily default and rating migration data from credit markets. This paper provides an overview of the main Econometric models available in the literature for dealing with what is sometimes called tick data. Additionally, a synthesis of the basic theory underlying these models is also presented. Finally, a new theorem dealing with the identifiability of latent intensity factors from point process data, jointly with a heuristic proof, is introduced.

Suggested Citation

  • Monteiro, André A., 2009. "The econometrics of randomly spaced financial data: a survey," DES - Working Papers. Statistics and Econometrics. WS ws097924, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws097924
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/bitstream/handle/10016/5995/ws097924.pdf?sequence=1
    Download Restriction: no

    References listed on IDEAS

    as
    1. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," CORE Discussion Papers 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Andre Monteiro & Georgi V. Smirnov & Andre Lucas, 2006. "Nonparametric Estimation for Non-Homogeneous Semi-Markov Processes: An Application to Credit Risk," Tinbergen Institute Discussion Papers 06-024/2, Tinbergen Institute, revised 27 Mar 2006.
    3. Patrick Gagliardini, 2005. "Stochastic Migration Models with Application to Corporate Risk," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(2), pages 188-226.
    4. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
    5. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    6. Bowsher, Clive G., 2007. "Modelling security market events in continuous time: Intensity based, multivariate point process models," Journal of Econometrics, Elsevier, vol. 141(2), pages 876-912, December.
    7. BAUWENS, Luc & HAUTSCH, Nikolaus, 2006. "Modelling financial high frequency data using point processes," CORE Discussion Papers 2006080, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Frank Gerhard & Nikolaus Hautsch, "undated". "Semiparametric autoregressive conditional proportional hazard models," Economics Papers 2002-W2, Economics Group, Nuffield College, University of Oxford.
    9. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    10. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    11. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
    12. Bauwens, L. & Galli, F., 2009. "Efficient importance sampling for ML estimation of SCD models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1974-1992, April.
    13. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453 World Scientific Publishing Co. Pte. Ltd..
    14. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    15. Luc Bauwens & Nikolaus Hautsch, 2006. "Stochastic Conditional Intensity Processes," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 450-493.
    16. Joann Jasiak, 1996. "Persistence in Intertrade Durations," Working Papers 1999_8, York University, Department of Economics, revised Mar 1999.
    17. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
    18. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    19. Sergio M. Focardi & Frank J. Fabozzi, 2005. "An autoregressive conditional duration model of credit-risk contagion," Journal of Risk Finance, Emerald Group Publishing, vol. 6(3), pages 208-225, May.
    20. Meitz, Mika & Terasvirta, Timo, 2006. "Evaluating Models of Autoregressive Conditional Duration," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 104-124, January.
    21. Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
    22. repec:pit:wpaper:321 is not listed on IDEAS
    23. Gagliardini, P. & Gourieroux, C., 2005. "Migration correlation: Definition and efficient estimation," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 865-894, April.
    24. Ruiz, Esther, 1994. "Quasi-maximum likelihood estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 63(1), pages 289-306, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Tick data;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C34 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Truncated and Censored Models; Switching Regression Models
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws097924. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.