IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper

Modelling financial high frequency data using point processes

  • BAUWENS, Luc
  • HAUTSCH, Nikolaus

In this paper, we give an overview of the state-of-the-art in the econometric literature on the modeling of so-called financial point processes. The latter are associated with the random arrival of specific financial trading events, such as transactions, quote updates, limit orders or price changes observable based on financial high-frequency data. After discussing fundamental statistical concepts of point process theory, we review durationbased and intensity-based models of financial point processes. Whereas duration-based approaches are mostly preferable for univariate time series, intensity-based models provide powerful frameworks to model multivariate point processes in continuous time. We illustrate the most important properties of the individual models and discuss major empirical applications.

(This abstract was borrowed from another version of this item.)

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers RP with number 2123.

as
in new window

Length:
Date of creation:
Date of revision:
Handle: RePEc:cor:louvrp:2123
Note: In : T.G. Andersen, R.A. Davis, J.-P. Kreiss, and T. Mikosch (eds.), Handbook of Financial Time Series. Springer-Verlag Heidelberg, 953-979, 2009
Contact details of provider: Postal:
Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)

Phone: 32(10)474321
Fax: +32 10474304
Web page: http://www.uclouvain.be/core
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. James D. Hamilton & Oscar Jorda, . "A model for the federal funds rate target," Department of Economics 99-07, California Davis - Department of Economics.
  2. Fernandes, Marcelo & Grammig, Joachim, 2003. "Nonparametric specification tests for conditional duration models," Economics Working Papers (Ensaios Economicos da EPGE) 502, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  3. John Knight & Cathy Q. Ning, 2008. "Estimation of the stochastic conditional duration model via alternative methods," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 593-616, November.
  4. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
  5. BAUWENS, Luc & GIOT, Pierre, . "Asymmetric ACD models: Introducing price information in ACD models," CORE Discussion Papers RP 1670, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  6. BAUWENS, Luc & HAUTSCH, Nikolaus, . "Stochastic conditional intensity processes," CORE Discussion Papers RP 1937, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  7. Hall, Anthony D. & Hautsch, Nikolaus, 2007. "Modelling the buy and sell intensity in a limit order book market," Journal of Financial Markets, Elsevier, vol. 10(3), pages 249-286, August.
  8. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  9. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," CORE Discussion Papers 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  10. Yacine Ait-Sahalia, 1995. "Testing Continuous-Time Models of the Spot Interest Rate," NBER Working Papers 5346, National Bureau of Economic Research, Inc.
  11. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
  12. Clive G. Bowsher, 2003. "Modelling Security Market Events in Continuous Time: Intensity Based, Multivariate Point Process Models," Economics Papers 2003-W03, Economics Group, Nuffield College, University of Oxford.
  13. Luc Bauwens & Pierre Giot & Joachim Grammig & David Veredas, 2000. "A Comparison of Financial Duration Models via Density Forecasts," Econometric Society World Congress 2000 Contributed Papers 0810, Econometric Society.
  14. Meddahi, Nour & Renault, Eric & Werker, Bas, 2006. "GARCH and irregularly spaced data," Economics Letters, Elsevier, vol. 90(2), pages 200-204, February.
  15. Kiefer, Nicholas M, 1988. "Economic Duration Data and Hazard Functions," Journal of Economic Literature, American Economic Association, vol. 26(2), pages 646-79, June.
  16. Rombouts, Jeroen V. K. & Bauwens, Luc, 2004. "Econometrics," Papers 2004,33, Humboldt-Universität Berlin, Center for Applied Statistics and Economics (CASE).
  17. Han, Aaron & Hausman, Jerry A, 1990. "Flexible Parametric Estimation of Duration and Competing Risk Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(1), pages 1-28, January-M.
  18. Meitz, Mika & Teräsvirta, Timo, 2004. "Evaluating models of autoregressive conditional duration," SSE/EFI Working Paper Series in Economics and Finance 557, Stockholm School of Economics, revised 13 Dec 2004.
  19. Heinen, Andreas & Rengifo, Erick, 2007. "Multivariate autoregressive modeling of time series count data using copulas," Journal of Empirical Finance, Elsevier, vol. 14(4), pages 564-583, September.
  20. Pierre Giot, 2005. "Market risk models for intraday data," The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 309-324.
  21. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
  22. Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2006. "Regime switching GARCH models," Cahiers de recherche 06-08, HEC Montréal, Institut d'économie appliquée.
  23. Fernandes, Marcelo & Grammig, Joachim, 2003. "A family of autoregressive conditional duration models," Economics Working Papers (Ensaios Economicos da EPGE) 501, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  24. De Luca Giovanni & Gallo Giampiero M., 2004. "Mixture Processes for Financial Intradaily Durations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-20, May.
  25. Christian M. Hafner, 2000. "Durations, Volume and the Prediction of Financial Returns in Transaction Time," Econometric Society World Congress 2000 Contributed Papers 0599, Econometric Society.
  26. Anthony D. Hall & Nikolaus Hautsch, 2004. "Order Aggressiveness and Order Book Dynamics," FRU Working Papers 2005/04, University of Copenhagen. Department of Economics. Finance Research Unit.
  27. Nikolaus Hautsch, 2003. "Assessing the Risk of Liquidity Suppliers on the Basis of Excess Demand Intensities," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(2), pages 189-215.
  28. Drost, F.C. & Werker, B.J.M., 2004. "Semiparametric duration models," Other publications TiSEM a1895e3e-f720-454b-9613-f, Tilburg University, School of Economics and Management.
  29. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
  30. Joann Jasiak, 1996. "Persistence in Intertrade Durations," Working Papers 1999_8, York University, Department of Economics, revised Mar 1999.
  31. Mika Meitz & Pentti Saikkonen, 2007. "Ergodicity, mixing, and existence of moments of a class of Markov models with applications to GARCH and ACD models," Economics Series Working Papers 327, University of Oxford, Department of Economics.
  32. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  33. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
  34. Hasbrouck, Joel, 1991. " Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
  35. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  36. Robert F. Engle & Asger Lunde, 2003. "Trades and Quotes: A Bivariate Point Process," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(2), pages 159-188.
  37. Siem Jan Koopman & André Lucas & André Monteiro, 2005. "The Multi-State Latent Factor Intensity Model for Credit Rating Transitions," Tinbergen Institute Discussion Papers 05-071/4, Tinbergen Institute, revised 04 Jul 2005.
  38. Georges Dionne & Pierre Duchesne & Maria Pacurar, 2005. "Intraday Value at Risk (IVaR) Using Tick-by-Tick Data with Application to the Toronto Stock Exchange," Cahiers de recherche 0533, CIRPEE.
  39. Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
  40. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
  41. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  42. Easley, David & O'Hara, Maureen, 1992. " Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
  43. Giovanni Luca & Giampiero Gallo, 2009. "Time-Varying Mixing Weights in Mixture Autoregressive Conditional Duration Models," Econometric Reviews, Taylor & Francis Journals, vol. 28(1-3), pages 102-120.
  44. Frank Gerhard & Nikolaus Hautsch, 1999. "Volatility Estimation on the Basis of Price Intensities," CoFE Discussion Paper 99-19, Center of Finance and Econometrics, University of Konstanz.
  45. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
  46. Large, Jeremy, 2007. "Measuring the resiliency of an electronic limit order book," Journal of Financial Markets, Elsevier, vol. 10(1), pages 1-25, February.
  47. Brock, W.A. & Dechert, W.D. & LeBaron, B. & Scheinkman, J.A., 1995. "A Test for Independence Based on the Correlation Dimension," Working papers 9520, Wisconsin Madison - Social Systems.
  48. Jan Henneke & Svetlozar Rachev & Frank Fabozzi & Metodi Nikolov, 2011. "MCMC-based estimation of Markov Switching ARMA-GARCH models," Applied Economics, Taylor & Francis Journals, vol. 43(3), pages 259-271.
  49. Giovanni De Luca & Paola Zuccolotto, 2003. "Finite and infinite mixtures for financial durations," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 431-455.
  50. Roman Liesenfeld & Ingmar Nolte & Winfried Pohlmeier, 2006. "Modelling financial transaction price movements: a dynamic integer count data model," Empirical Economics, Springer, vol. 30(4), pages 795-825, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2123. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.