IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v16y2009i5p777-792.html
   My bibliography  Save this article

Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange

Author

Listed:
  • Dionne, Georges
  • Duchesne, Pierre
  • Pacurar, Maria

Abstract

This paper investigates the use of tick-by-tick data for intraday market risk measurement. We propose a method to compute an Intraday Value at Risk based on irregularly spaced high-frequency data and an intraday Monte Carlo simulation. A log-ACD-ARMA-EGARCH model is used to specify the joint density of the marked point process of durations and high-frequency returns. We apply our methodology to transaction data for three stocks actively traded on the Toronto Stock Exchange. Compared to traditional techniques applied to intraday data, our methodology has two main advantages. First, our risk measure has a higher informational content as it takes into account all observations. On the total risk measure, our method allows for distinguishing the effect of random trade durations from the effect of random returns, and for analyzing the interaction between these factors. Thus, we find that the information contained in the time between transactions is relevant to risk analysis, which is consistent with predictions from asymmetric-information models in the market microstructure literature. Second, once the model has been estimated, the IVaR can be computed by any trader for any time horizon based on the same information and with no need of sampling the data and estimating the model again when the horizon changes. Backtesting results show that our approach constitutes reliable means of measuring intraday risk for traders who are very active in the market.

Suggested Citation

  • Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
  • Handle: RePEc:eee:empfin:v:16:y:2009:i:5:p:777-792
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927-5398(09)00036-X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Meddahi, Nour & Renault, Eric & Werker, Bas, 2006. "GARCH and irregularly spaced data," Economics Letters, Elsevier, vol. 90(2), pages 200-204, February.
    3. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, pages 379-398.
    4. Sentana, Enrique & Wadhwani, Sushil B, 1992. "Feedback Traders and Stock Return Autocorrelations: Evidence from a Century of Daily Data," Economic Journal, Royal Economic Society, vol. 102(411), pages 415-425, March.
    5. Pierre Giot, 2005. "Market risk models for intraday data," The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 309-324.
    6. Foster, F Douglas & Viswanathan, S, 1990. "A Theory of the Interday Variations in Volume, Variance, and Trading Costs in Securities Markets," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 593-624.
    7. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, pages 579-625.
    9. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    10. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    11. Christian Gourieroux & Joanna Jasiak, 2001. "Local Likelihood Density Estimation and Value at Risk," Working Papers 2001-31, Center for Research in Economics and Statistics.
    12. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    13. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
    14. Robert F. Engle & Joe Lange, 1997. "Measuring, Forecasting and Explaining Time Varying Liquidity in the Stock Market," NBER Working Papers 6129, National Bureau of Economic Research, Inc.
    15. Gourieroux, Christian & Jasiak, Joanna & Le Fol, Gaelle, 1999. "Intra-day market activity," Journal of Financial Markets, Elsevier, pages 193-226.
    16. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    17. M.J.B. Hall, 1996. "The amendment to the capital accord to incorporate market risk," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 49(197), pages 271-277.
    18. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    19. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, pages 379-398.
    20. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2000. "Exchange Rate Returns Standardized by Realized Volatility are (Nearly) Gaussian," Multinational Finance Journal, Multinational Finance Journal, vol. 4(3-4), pages 159-179, September.
    21. repec:dau:papers:123456789/5478 is not listed on IDEAS
    22. Stanislav Anatolyev & Dmitry Shakin, 2007. "Trade intensity in the Russian stock market: dynamics, distribution and determinants," Applied Financial Economics, Taylor & Francis Journals, pages 87-104.
    23. David Kohn & Fernando Leibovici & Michal Szkup, 2016. "Financial Frictions And New Exporter Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 57, pages 453-486, May.
    24. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    25. DOLADO , Juan J. & RODRIGUEZ-POO, Juan & VEREDAS, David, 2004. "Testing weak exogeneity in the exponential family : an application to financial point processes," CORE Discussion Papers 2004049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    26. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
    27. Pierre Giot & Joachim Grammig, 2006. "How large is liquidity risk in an automated auction market?," Empirical Economics, Springer, pages 867-887.
    28. Ghysels Eric & Jasiak Joanna, 1998. "GARCH for Irregularly Spaced Financial Data: The ACD-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(4), pages 1-19, January.
    29. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    30. Foster, F. Douglas & Viswanathan, S., 1994. "Strategic Trading with Asymmetrically Informed Traders and Long-Lived Information," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(04), pages 499-518, December.
    31. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    32. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    33. Madhavan, Ananth, 1992. " Trading Mechanisms in Securities Markets," Journal of Finance, American Finance Association, vol. 47(2), pages 607-641, June.
    34. Diamond, Douglas W. & Verrecchia, Robert E., 1987. "Constraints on short-selling and asset price adjustment to private information," Journal of Financial Economics, Elsevier, vol. 18(2), pages 277-311, June.
    35. Bertram, William K., 2005. "A threshold model for Australian Stock Exchange equities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 561-576.
    36. Davies, Ryan J., 2003. "The Toronto Stock Exchange preopening session," Journal of Financial Markets, Elsevier, vol. 6(4), pages 491-516, August.
    37. Beltratti, Andrea & Morana, Claudio, 1999. "Computing value at risk with high frequency data," Journal of Empirical Finance, Elsevier, pages 431-455.
    38. Easley, David & O'Hara, Maureen, 1992. " Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    39. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
    40. Pierre Giot & Joachim Grammig, 2006. "How large is liquidity risk in an automated auction market?," Empirical Economics, Springer, pages 867-887.
    41. Russell, Jeffrey R. & Engle, Robert F., 2005. "A Discrete-State Continuous-Time Model of Financial Transactions Prices and Times: The Autoregressive Conditional Multinomial-Autoregressive Conditional Duration Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 166-180, April.
    42. Rombouts, Jeroen V. K. & Bauwens, Luc, 2004. "Econometrics," Papers 2004,33, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    43. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    44. repec:adr:anecst:y:2000:i:60:p:09 is not listed on IDEAS
    45. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
    46. Brian F. Smith & D. Alasdair S. Turnbull & Robert W. White, 2006. "The Impact of Pennies on the Market Quality of the Toronto Stock Exchange," The Financial Review, Eastern Finance Association, vol. 41(2), pages 273-288, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stavros Degiannakis & Pamela Dent & Christos Floros, 2014. "A Monte Carlo Simulation Approach to Forecasting Multi-period Value-at-Risk and Expected Shortfall Using the FIGARCH-skT Specification," Manchester School, University of Manchester, vol. 82(1), pages 71-102, January.
    2. David Ardia & Lukasz Gatarek & Lennart F. Hoogerheide, 2014. "A New Bootstrap Test for the Validity of a Set of Marginal Models for Multiple Dependent Time Series: An Application to Risk Analysis," Tinbergen Institute Discussion Papers 14-028/III, Tinbergen Institute.
    3. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    4. Paarsch, Harry J. & Shearer, Bruce S., 2009. "The response to incentives and contractual efficiency: Evidence from a field experiment," European Economic Review, Elsevier, pages 481-494.
    5. Mike So & Rui Xu, 2013. "Forecasting Intraday Volatility and Value-at-Risk with High-Frequency Data," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, pages 83-111.
    6. Dionne, Georges & Zhou, Xiaozhou, 2016. "The Dynamics of Ex-ante High-Frequency Liquidity: An Empirical Analysis," Working Papers 15-5, HEC Montreal, Canada Research Chair in Risk Management.
    7. Karmakar, Madhusudan & Paul, Samit, 2016. "Intraday risk management in International stock markets: A conditional EVT approach," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 34-55.
    8. Weiß, Gregor N.F. & Supper, Hendrik, 2013. "Forecasting liquidity-adjusted intraday Value-at-Risk with vine copulas," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3334-3350.
    9. Lönnbark, Carl & Holmberg, Ulf & Brännäs, Kurt, 2011. "Value at Risk and Expected Shortfall for large portfolios," Finance Research Letters, Elsevier, vol. 8(2), pages 59-68, June.
    10. Tse, Yiu-Kuen & Dong, Yingjie, 2014. "Intraday periodicity adjustments of transaction duration and their effects on high-frequency volatility estimation," Journal of Empirical Finance, Elsevier, pages 352-361.
    11. Chavez-Demoulin, V. & McGill, J.A., 2012. "High-frequency financial data modeling using Hawkes processes," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3415-3426.
    12. Zhang Zongxin & Zhang Xiao, 2011. "Trading duration, mutual funds behavior and stock market shock: Based on ACD model to mine mutual funds investment behavior," China Finance Review International, Emerald Group Publishing, vol. 1(3), pages 220-240, July.
    13. Denisa Georgiana Banulescu & Gilbert Colletaz & Christophe Hurlin & Sessi Tokpavi, 2013. "High-Frequency Risk Measures," Working Papers halshs-00859456, HAL.
    14. Degiannakis, Stavros & Floros, Christos & Dent, Pamela, 2013. "Forecasting value-at-risk and expected shortfall using fractionally integrated models of conditional volatility: International evidence," International Review of Financial Analysis, Elsevier, vol. 27(C), pages 21-33.
    15. Batten, Jonathan A. & Kinateder, Harald & Wagner, Niklas, 2014. "Multifractality and value-at-risk forecasting of exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 71-81.
    16. Maria Pacurar, 2008. "Autoregressive Conditional Duration Models In Finance: A Survey Of The Theoretical And Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 22(4), pages 711-751, September.
    17. Dahen, Hela & Dionne, Georges, 2010. "Scaling models for the severity and frequency of external operational loss data," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1484-1496, July.
    18. Liu, Shouwei & Tse, Yiu-Kuen, 2015. "Intraday Value-at-Risk: An asymmetric autoregressive conditional duration approach," Journal of Econometrics, Elsevier, vol. 189(2), pages 437-446.
    19. Alain Hecq & Sébastien Laurent & Franz C. Palm, 2011. "Common Intraday Periodicity," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 10(2), pages 325-353, 2012 20 1.
    20. Holmberg, Ulf, 2012. "Essays on Credit Markets and Banking," Umeå Economic Studies 840, Umeå University, Department of Economics.
    21. repec:jss:jstsof:v:080:i04 is not listed on IDEAS
    22. Dionne, Georges & Pacurar, Maria & Zhou, Xiaozhou, 2015. "Liquidity-adjusted Intraday Value at Risk modeling and risk management: An application to data from Deutsche Börse," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 202-219.
    23. Rouetbi Emnal & Mamoghli Chokri, 2014. "Measuring Liquidity Risk in an Emerging Market: Liquidity Adjusted Value at Risk Approach for High Frequency Data," International Journal of Economics and Financial Issues, Econjournals, vol. 4(1), pages 40-53.

    More about this item

    Keywords

    Intraday Value at Risk (IVaR) Tick-by-tick data ACD model Intraday market risk Market microstructure;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:16:y:2009:i:5:p:777-792. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.