IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Trade intensity in the Russian stock market:dynamics, distribution and determinants

  • Stanislav Anatolyev

    ()

    (NES)

  • Dmitry Shakin

We investigate the distribution and evolution of intertrade durations for frequently traded stocks at the Moscow Interbank Currency Exchange. We use a flexible econometric model based on ARMA and GARCH which, when coupled with a certain class of distributions that allow for skewness and slim-tailedness, adequately captures the characteristics of conditional distribution of durations for Russian stocks, and is able to generate high quality density forecasts. We also analyze what factors determine the dynamics of logdurations and in which way. The results in particular indicate that the Russian market is characterized by aggressive informed traders and timid liquidity traders, and that the participants react evenly to upward and downward short-run price trends.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cefir.ru/papers/WP70Anatolyev_Shakin.pdf
Download Restriction: no

Paper provided by Center for Economic and Financial Research (CEFIR) in its series Working Papers with number w0070.

as
in new window

Length: 37 pages
Date of creation: Aug 2006
Date of revision:
Handle: RePEc:cfr:cefirw:w0070
Contact details of provider: Postal: 117418 Russia, Moscow, Nakhimovsky pr., 47, office 720
Phone: +7 (495) 105 50 02
Fax: +7 (495) 105 50 03
Web page: http://www.cefir.ru
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  2. Meitz, Mika & Teräsvirta, Timo, 2004. "Evaluating models of autoregressive conditional duration," SSE/EFI Working Paper Series in Economics and Finance 557, Stockholm School of Economics, revised 13 Dec 2004.
  3. Christian Hafner, 2005. "Durations, volume and the prediction of financial returns in transaction time," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 145-152.
  4. Fedorov, Pavel & Sarkissian, Sergei, 2000. "Cross-sectional variations in the degree of global integration: the case of Russian equities," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 131-150, June.
  5. Satheesh Aradhyula & A. Tolga Ergun, 2004. "Trading collar, intraday periodicity and stock market volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 14(13), pages 909-913.
  6. Robert F. Engle & Asger Lunde, 2003. "Trades and Quotes: A Bivariate Point Process," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(2), pages 159-188.
  7. Hanousek, Jan & Podpiera, Richard, 2003. "Informed trading and the bid-ask spread: evidence from an emerging market," Journal of Comparative Economics, Elsevier, vol. 31(2), pages 275-296, June.
  8. Kolodyazhny Georgy & Medvedev Alexey, 2001. "Financial Crisis in Russia: The Behavior of Non-Residents," EERC Working Paper Series 2k/12e, EERC Research Network, Russia and CIS.
  9. Drost, Feike C & Werker, Bas J M, 2004. "Semiparametric Duration Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 40-50, January.
  10. Dufour, Alfonso & Engle, Robert F, 1999. "Time and the Price Impact of a Trade," University of California at San Diego, Economics Working Paper Series qt62c0h04j, Department of Economics, UC San Diego.
  11. Eric Ghysels & Christian Gourieroux & Joanna Jasiak, 1997. "Stochastic Volatility Duration Models," Working Papers 97-46, Centre de Recherche en Economie et Statistique.
  12. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
  13. repec:ner:tilbur:urn:nbn:nl:ui:12-140875 is not listed on IDEAS
  14. Russell, Jeffrey R. & Engle, Robert F., 2005. "A Discrete-State Continuous-Time Model of Financial Transactions Prices and Times: The Autoregressive Conditional Multinomial-Autoregressive Conditional Duration Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 166-180, April.
  15. Luc Bauwens & Pierre Giot & Joachim Grammig & David Veredas, 2004. "A comparison of financial duration models via density forecast," ULB Institutional Repository 2013/136218, ULB -- Universite Libre de Bruxelles.
  16. Grammig, Joachim & Wellner, Marc, 2002. "Modeling the interdependence of volatility and inter-transaction duration processes," Journal of Econometrics, Elsevier, vol. 106(2), pages 369-400, February.
  17. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-59, October.
  18. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
  19. Bernd Hayo & Ali M. Kutan, 2005. "The impact of news, oil prices, and global market developments on Russian financial markets," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 13(2), pages 373-393, 04.
  20. Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Universite de Montreal, Departement de sciences economiques.
  21. Tim Bollerslev & Jeffrey M. Wooldridge, 1988. "Quasi-Maximum Likelihood Estimation of Dynamic Models with Time-Varying Covariances," Working papers 505, Massachusetts Institute of Technology (MIT), Department of Economics.
  22. Spierdijk, Laura, 2004. "An empirical analysis of the role of the trading intensity in information dissemination on the NYSE," Journal of Empirical Finance, Elsevier, vol. 11(2), pages 163-184, March.
  23. Kolodyazhny Georgy & Medvedev Alexey, 2003. "Russian stock market: participants and their strategies," EERC Working Paper Series 01-060e, EERC Research Network, Russia and CIS.
  24. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
  25. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  26. Stanislav Anatolyev & Sergey Korepanov, 2003. "The term structure of Russian interest rates," Applied Economics Letters, Taylor & Francis Journals, vol. 10(13), pages 867-870.
  27. Easley, David & O'Hara, Maureen, 1992. " Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
  28. Joann Jasiak, 1996. "Persistence in Intertrade Durations," Working Papers 1999_8, York University, Department of Economics, revised Mar 1999.
  29. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-83, November.
  30. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
  31. Drost, F.C. & Werker, B.J.M., 2004. "Semiparametric duration models," Other publications TiSEM a1895e3e-f720-454b-9613-f, School of Economics and Management.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cfr:cefirw:w0070. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Julia Babich)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.