IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1008.0160.html

Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant

Author

Listed:
  • Yong-Ping Ruan

    (ECUST)

  • Wei-Xing Zhou

    (ECUST)

Abstract

Intertrade duration of equities is an important financial measure characterizing the trading activities, which is defined as the waiting time between successive trades of an equity. Using the ultrahigh-frequency data of a liquid Chinese stock and its associated warrant, we perform a comparative investigation of the statistical properties of their intertrade duration time series. The distributions of the two equities can be better described by the shifted power-law form than the Weibull and their scaled distributions do not collapse onto a single curve. Although the intertrade durations of the two equities have very different magnitude, their intraday patterns exhibit very similar shapes. Both detrended fluctuation analysis (DFA) and detrending moving average analysis (DMA) show that the 1-min intertrade duration time series of the two equities are strongly correlated. In addition, both multifractal detrended fluctuation analysis (MFDFA) and multifractal detrending moving average analysis (MFDMA) unveil that the 1-min intertrade durations possess multifractal nature. However, the difference between the two singularity spectra of the two equities obtained from the MFDMA is much smaller than that from the MFDFA.

Suggested Citation

  • Yong-Ping Ruan & Wei-Xing Zhou, 2010. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Papers 1008.0160, arXiv.org.
  • Handle: RePEc:arx:papers:1008.0160
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1008.0160
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    3. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
    4. Du, Bian & Zhu, Hongliang & Zhao, Jingdong, 2016. "Optimal execution in high-frequency trading with Bayesian learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 767-777.
    5. Shi, Wen & Zou, Rui-biao & Wang, Fang & Su, Le, 2015. "A new image segmentation method based on multifractal detrended moving average analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 197-205.
    6. Yuan, Ying & Zhuang, Xin-tian & Jin, Xiu & Huang, Wei-qiang, 2014. "Stable distribution and long-range correlation of Brent crude oil market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 173-179.
    7. da Silva Filho, A.M. & Zebende, G.F. & Guedes, E.F., 2021. "Analysis of intentional lethal violent crimes: A sliding windows approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    8. Li, Muyi & Huang, Yongxiang, 2014. "Hilbert–Huang Transform based multifractal analysis of China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 222-229.
    9. Li, Ming-Xia & Jiang, Zhi-Qiang & Xie, Wen-Jie & Xiong, Xiong & Zhang, Wei & Zhou, Wei-Xing, 2015. "Unveiling correlations between financial variables and topological metrics of trading networks: Evidence from a stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 575-584.
    10. Faheem Aslam & Wahbeeah Mohti & Paulo Ferreira, 2020. "Evidence of Intraday Multifractality in European Stock Markets during the Recent Coronavirus (COVID-19) Outbreak," IJFS, MDPI, vol. 8(2), pages 1-13, May.
    11. Mali, P. & Manna, S.K. & Haldar, P.K. & Mukhopadhyay, A. & Singh, G., 2017. "Detrended analysis of shower track distribution in nucleus-nucleus interactions at CERN SPS energy," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 86-94.
    12. Wang, Dong-Hua & Yu, Xiao-Wen & Suo, Yuan-Yuan, 2012. "Statistical properties of the yuan exchange rate index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(12), pages 3503-3512.
    13. Marcin Wątorek & Jarosław Kwapień & Stanisław Drożdż, 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time," Future Internet, MDPI, vol. 14(7), pages 1-15, July.
    14. Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.
    15. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2022. "Multifractal cross-correlations of bitcoin and ether trading characteristics in the post-COVID-19 time," Papers 2208.01445, arXiv.org.
    16. Kim, Kyong-Hui & Kim, Nam-Ung & Ju, Dong-Chol & Ri, Ju-Hyang, 2020. "Efficient hedging currency options in fractional Brownian motion model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    17. Bian, Liu & Li, Zhi, 2021. "Fuzzy simulation of European option pricing using sub-fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    18. Yang, Yan-Hong & Shao, Ying-Hui & Shao, Hao-Lin & Stanley, H. Eugene, 2019. "Revisiting the weak-form efficiency of the EUR/CHF exchange rate market: Evidence from episodes of different Swiss franc regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 734-746.
    19. Yao, Can-Zhong & Mo, Yi-Na & Zhang, Ze-Kun, 2021. "A study of the efficiency of the Chinese clean energy stock market and its correlation with the crude oil market based on an asymmetric multifractal scaling behavior analysis," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    20. Fang, Wen & Tian, Shaolin & Wang, Jun, 2018. "Multiscale fluctuations and complexity synchronization of Bitcoin in China and US markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 109-120.
    21. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    22. Zhuang, Xiaoyang & Wei, Yu & Zhang, Bangzheng, 2014. "Multifractal detrended cross-correlation analysis of carbon and crude oil markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 113-125.
    23. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    24. Plamen Ch Ivanov & Ainslie Yuen & Pandelis Perakakis, 2014. "Impact of Stock Market Structure on Intertrade Time and Price Dynamics," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-14, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1008.0160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.