IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i24p6418-6431.html
   My bibliography  Save this article

Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm

Author

Listed:
  • Xiao, Wei-Lin
  • Zhang, Wei-Guo
  • Zhang, Xili
  • Zhang, Xiaoli

Abstract

This paper deals with the problem of pricing equity warrants in a mixed fractional Brownian environment. Based on the quasi-conditional expectation and the Fourier transform, we present the pricing model for equity warrants. Moreover, a hybrid intelligent algorithm, which is based on the Genetic Algorithm, is employed to solve the nonlinear optimization problem. The performance of our model and the proposed algorithm have been illustrated with some numerical examples.

Suggested Citation

  • Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6418-6431
    DOI: 10.1016/j.physa.2012.07.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112007108
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.07.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
    2. He, Ling-Yun & Qian, Wen-Bin, 2012. "A Monte Carlo simulation to the performance of the R/S and V/S methods—Statistical revisit and real world application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3770-3782.
    3. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2010. "Cross-correlations between Chinese A-share and B-share markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5468-5478.
    4. Rimas Norvaisa, 2000. "Modelling of stock price changes: A real analysis approach," Finance and Stochastics, Springer, vol. 4(3), pages 343-369.
    5. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    6. Vilela Mendes, R., 2008. "The fractional volatility model: An agent-based interpretation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3987-3994.
    7. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    8. Cajueiro, Daniel O. & Tabak, Benjamin M., 2007. "Long-range dependence and multifractality in the term structure of LIBOR interest rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 603-614.
    9. Feng Li & M. H. Franco Wong, 2005. "Employee Stock Options, Equity Valuation, and the Valuation of Option Grants Using a Warrant‐Pricing Model," Journal of Accounting Research, Wiley Blackwell, vol. 43(1), pages 97-131, March.
    10. Serinaldi, Francesco, 2010. "Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2770-2781.
    11. Wang, Xiao-Tian, 2010. "Scaling and long range dependence in option pricing, IV: Pricing European options with transaction costs under the multifractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 789-796.
    12. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.
    13. Christian Bender & Tommi Sottinen & Esko Valkeila, 2008. "Pricing by hedging and no-arbitrage beyond semimartingales," Finance and Stochastics, Springer, vol. 12(4), pages 441-468, October.
    14. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    15. Tomas Björk & Henrik Hult, 2005. "A note on Wick products and the fractional Black-Scholes model," Finance and Stochastics, Springer, vol. 9(2), pages 197-209, April.
    16. Kremer, Joseph W. & Roenfeldt, Rodney L., 1993. "Warrant Pricing: Jump-Diffusion vs. Black-Scholes," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 255-272, June.
    17. Robert A. Jarrow & Siegfried Trautmann, 2011. "A Reduced‐Form Model for Warrant Valuation," The Financial Review, Eastern Finance Association, vol. 46(3), pages 413-425, August.
    18. Galai, Dan & Schneller, Meir I, 1978. "Pricing of Warrants and the Value of the Firm," Journal of Finance, American Finance Association, vol. 33(5), pages 1333-1342, December.
    19. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    20. Lauterbach, Beni & Schultz, Paul, 1990. "Pricing Warrants: An Empirical Study of the Black-Scholes Model and Its Alternatives," Journal of Finance, American Finance Association, vol. 45(4), pages 1181-1209, September.
    21. Wei Xiong & Jialin Yu, 2011. "The Chinese Warrants Bubble," American Economic Review, American Economic Association, vol. 101(6), pages 2723-2753, October.
    22. Tabak, Benjamin M. & Cajueiro, Daniel O., 2005. "The long-range dependence behavior of the term structure of interest rates in Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 418-426.
    23. Hanke, Michael & Potzelberger, Klaus, 2002. "Consistent pricing of warrants and traded options," Review of Financial Economics, Elsevier, vol. 11(1), pages 63-77.
    24. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
    25. Andrey D. Ukhov, 2004. "Warrant Pricing Using Observable Variables," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 27(3), pages 329-339, September.
    26. David C. Leonard & Michael E. Solt, 1990. "On Using The Black-Scholes Model To Value Warrants," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(2), pages 81-92, June.
    27. Kang, Sang Hoon & Yoon, Seong-Min, 2007. "Long memory properties in return and volatility: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 591-600.
    28. Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
    29. Mariani, M.C. & Florescu, I. & Beccar Varela, M.P. & Ncheuguim, E., 2010. "Study of memory effects in international market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1653-1664.
    30. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    31. Wang, Xiao-Tian, 2010. "Scaling and long-range dependence in option pricing I: Pricing European option with transaction costs under the fractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 438-444.
    32. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo & Fernandez-Anaya, Guillermo, 2008. "Time-varying Hurst exponent for US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6159-6169.
    33. Wang, Xiao-Tian & Zhu, En-Hui & Tang, Ming-Ming & Yan, Hai-Gang, 2010. "Scaling and long-range dependence in option pricing II: Pricing European option with transaction costs under the mixed Brownian–fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 445-451.
    34. Xiao, Weilin & Zhang, Weiguo & Xu, Weijun & Zhang, Xili, 2012. "The valuation of equity warrants in a fractional Brownian environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1742-1752.
    35. Wang, Xiao-Tian & Yan, Hai-Gang & Tang, Ming-Ming & Zhu, En-Hui, 2010. "Scaling and long-range dependence in option pricing III: A fractional version of the Merton model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 452-458.
    36. Schulz, G. Uwe & Trautmann, Siegfried, 1994. "Robustness of option-like warrant valuation," Journal of Banking & Finance, Elsevier, vol. 18(5), pages 841-859, October.
    37. Wei Xiong & Jialin Yu, 2011. "The Chinese Warrants Bubble," Working Papers 1398, Princeton University, Department of Economics, Econometric Research Program..
    38. Longjin, Lv & Ren, Fu-Yao & Qiu, Wei-Yuan, 2010. "The application of fractional derivatives in stochastic models driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4809-4818.
    39. Kang, Sang Hoon & Yoon, Seong-Min, 2008. "Long memory features in the high frequency data of the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5189-5196.
    40. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    41. Emanuele Bajo & Massimiliano Barbi, 2010. "The risk-shifting effect and the value of a warrant," Quantitative Finance, Taylor & Francis Journals, vol. 10(10), pages 1203-1213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    2. Prakasa Rao, B.L.S., 2016. "Pricing geometric Asian power options under mixed fractional Brownian motion environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 92-99.
    3. Zhaoqiang Yang, 2017. "Efficient valuation and exercise boundary of American fractional lookback option in a mixed jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-29, June.
    4. Cai, Chunhao & Cheng, Xuwen & Xiao, Weilin & Wu, Xiang, 2019. "Parameter identification for mixed fractional Brownian motions with the drift parameter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    5. Xiao, Weilin & Zhang, Weiguo & Zhang, Xili & Chen, Xiaoyan, 2014. "The valuation of equity warrants under the fractional Vasicek process of the short-term interest rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 320-337.
    6. Xu Feng, 2020. "Bifractional Black-Scholes Model for Pricing European Options and Compound Options," Journal of Systems Science and Information, De Gruyter, vol. 8(4), pages 346-355, August.
    7. Kim, Kyong-Hui & Yun, Sim & Kim, Nam-Ung & Ri, Ju-Hyuang, 2019. "Pricing formula for European currency option and exchange option in a generalized jump mixed fractional Brownian motion with time-varying coefficients," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 215-231.
    8. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    9. Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    10. Jian Pan & Xiangying Zhou, 2017. "Pricing for options in a mixed fractional Hull–White interest rate model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-15, March.
    11. Alexander Kukush & Stanislav Lohvinenko & Yuliya Mishura & Kostiantyn Ralchenko, 2022. "Two approaches to consistent estimation of parameters of mixed fractional Brownian motion with trend," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 159-187, April.
    12. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach to compute the first-passage probability density function in a time-changed Brownian model: Applications in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 330-344.
    13. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    14. Foad Shokrollahi & Davood Ahmadian & Luca Vincenzo Ballestra, 2021. "Actuarial strategy for pricing Asian options under a mixed fractional Brownian motion with jumps," Papers 2105.06999, arXiv.org.
    15. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, June.
    16. Chen, Wenting & Yan, Bowen & Lian, Guanghua & Zhang, Ying, 2016. "Numerically pricing American options under the generalized mixed fractional Brownian motion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 180-189.
    17. He, Xinjiang & Chen, Wenting, 2014. "The pricing of credit default swaps under a generalized mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 404(C), pages 26-33.
    18. Kim, Kyong-Hui & Kim, Nam-Ung & Ju, Dong-Chol & Ri, Ju-Hyang, 2020. "Efficient hedging currency options in fractional Brownian motion model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    19. Wei-Guo Zhang & Zhe Li & Yong-Jun Liu & Yue Zhang, 2021. "Pricing European Option Under Fuzzy Mixed Fractional Brownian Motion Model with Jumps," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 483-515, August.
    20. Zhang, Pu & Sun, Qi & Xiao, Wei-Lin, 2014. "Parameter identification in mixed Brownian–fractional Brownian motions using Powell's optimization algorithm," Economic Modelling, Elsevier, vol. 40(C), pages 314-319.
    21. Foad Shokrollahi, 2017. "The valuation of European option with transaction costs by mixed fractional Merton model," Papers 1702.00152, arXiv.org.
    22. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    23. Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Weilin & Zhang, Weiguo & Xu, Weijun & Zhang, Xili, 2012. "The valuation of equity warrants in a fractional Brownian environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1742-1752.
    2. Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.
    3. Zhou, Qing & Zhang, Xili, 2020. "Pricing equity warrants in Merton jump–diffusion model with credit risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    4. Xiao, Weilin & Zhang, Xili, 2016. "Pricing equity warrants with a promised lowest price in Merton’s jump–diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 219-238.
    5. Xiao, Weilin & Zhang, Weiguo & Zhang, Xili & Chen, Xiaoyan, 2014. "The valuation of equity warrants under the fractional Vasicek process of the short-term interest rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 320-337.
    6. Kim, Kyong-Hui & Kim, Nam-Ung & Ju, Dong-Chol & Ri, Ju-Hyang, 2020. "Efficient hedging currency options in fractional Brownian motion model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    7. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    8. Xiao, Wei-Lin & Zhang, Wei-Guo & Yao, Zheng & Wang, Xiao-Hui, 2013. "The impact of issuing warrant and debt on behavior of the firm's stock," Economic Modelling, Elsevier, vol. 31(C), pages 635-641.
    9. Foad Shokrollahi, 2017. "Pricing compound and extendible options under mixed fractional Brownian motion with jumps," Papers 1708.04829, arXiv.org.
    10. Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
    11. Omid Jenabi & Nazar Dahmardeh Ghale No, 2018. "Option Pricing in Stochastic Volatility Models Driven by Fractional Jump-Diffusion Processes," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 8(1), pages 1374-1374.
    12. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, June.
    13. Guo, Zhidong & Yuan, Hongjun, 2014. "Pricing European option under the time-changed mixed Brownian-fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 73-79.
    14. M. Rezaei & A. R. Yazdanian & A. Ashrafi & S. M. Mahmoudi, 2022. "Numerically Pricing Nonlinear Time-Fractional Black–Scholes Equation with Time-Dependent Parameters Under Transaction Costs," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 243-280, June.
    15. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    16. Cai, Chunhao & Cheng, Xuwen & Xiao, Weilin & Wu, Xiang, 2019. "Parameter identification for mixed fractional Brownian motions with the drift parameter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    17. Jian Pan & Xiangying Zhou, 2017. "Pricing for options in a mixed fractional Hull–White interest rate model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-15, March.
    18. José Eduardo Correia & João Duque, 2008. "Dilution and Dividend Effects on the Portuguese Equity Warrants Market," Portuguese Journal of Management Studies, ISEG, Universidade de Lisboa, vol. 0(2), pages 161-192.
    19. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    20. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:24:p:6418-6431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.