IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v385y2007i2p591-600.html
   My bibliography  Save this article

Long memory properties in return and volatility: Evidence from the Korean stock market

Author

Listed:
  • Kang, Sang Hoon
  • Yoon, Seong-Min

Abstract

In this paper, we study the dual long memory property of the Korean stock market. For this purpose, the ARFIMA–FIGARCH model is applied to two daily Korean stock price indices (KOSPI and KOSDAQ). Our empirical results indicate that long memory dynamics in the returns and volatility can be adequately estimated by the joint ARFIMA–FIGARCH model. We also found that the assumption of a skewed Student-t distribution is better for incorporating the tendency of asymmetric leptokurtosis in a return distribution.

Suggested Citation

  • Kang, Sang Hoon & Yoon, Seong-Min, 2007. "Long memory properties in return and volatility: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 591-600.
  • Handle: RePEc:eee:phsmap:v:385:y:2007:i:2:p:591-600
    DOI: 10.1016/j.physa.2007.07.051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107008084
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.07.051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beine, Michel & Laurent, Sebastien, 2003. "Central bank interventions and jumps in double long memory models of daily exchange rates," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 641-660, December.
    2. V. Plerou & P. Gopikrishnan & L. A. N. Amaral & M. Meyer & H. E. Stanley, 1999. "Scaling of the distribution of price fluctuations of individual companies," Papers cond-mat/9907161, arXiv.org.
    3. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    4. Xiu, Jin & Jin, Yao, 2007. "Empirical study of ARFIMA model based on fractional differencing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 138-154.
    5. Mantegna,Rosario N. & Stanley,H. Eugene, 2007. "Introduction to Econophysics," Cambridge Books, Cambridge University Press, number 9780521039871.
    6. Kim, Kyungsik & Yoon, Seong-Min, 2004. "Multifractal features of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 272-278.
    7. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    8. Yoon, Seong-Min & Choi, J.S. & Christopher Lee, C. & Yum, Myung-Kul & Kim, Kyungsik, 2006. "Dynamical volatilities for yen–dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 569-575.
    9. Michel Beine & Sébastien Laurent & Christelle Lecourt, 2002. "Accounting for conditional leptokurtosis and closing days effects in FIGARCH models of daily exchange rates," ULB Institutional Repository 2013/10443, ULB -- Universite Libre de Bruxelles.
    10. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    11. Dionisio, Andreia & Menezes, Rui & Mendes, Diana A., 2007. "On the integrated behaviour of non-stationary volatility in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 58-65.
    12. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    13. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    14. Galluccio, S. & Caldarelli, G. & Marsili, M. & Zhang, Y.-C., 1997. "Scaling in currency exchange," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 423-436.
    15. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    16. Podobnik, Boris & Ivanov, Plamen Ch. & Grosse, Ivo & Matia, Kaushik & Eugene Stanley, H., 2004. "ARCH–GARCH approaches to modeling high-frequency financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 216-220.
    17. Ivanov, Plamen Ch. & Podobnik, Boris & Lee, Youngki & Stanley, H.Eugene, 2001. "Truncated Lévy process with scale-invariant behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 154-160.
    18. Tang, Ta-Lun & Shieh, Shwu-Jane, 2006. "Long memory in stock index futures markets: A value-at-risk approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 437-448.
    19. Fengzhong Wang & Kazuko Yamasaki & Shlomo Havlin & H. Eugene Stanley, 2005. "Scaling and memory of intraday volatility return intervals in stock market," Papers physics/0511101, arXiv.org.
    20. Bormetti, Giacomo & Cisana, Enrica & Montagna, Guido & Nicrosini, Oreste, 2007. "A non-Gaussian approach to risk measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 532-542.
    21. Scalas, Enrico, 1998. "Scaling in the market of futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 253(1), pages 394-402.
    22. Richard T. Baillie & Young Wook Han & Tae-Go Kwon, 2002. "Further Long Memory Properties of Inflationary Shocks," Southern Economic Journal, John Wiley & Sons, vol. 68(3), pages 496-510, January.
    23. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Contemporaneous aggregation and long-memory property of returns and volatility in the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4844-4854.
    2. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    3. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    4. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
    5. Malinda & Maya & Jo-Hui & Chen, 2022. "Testing for the Long Memory and Multiple Structural Breaks in Consumer ETFs," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(6), pages 1-6.
    6. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    7. Stanley, H.E. & Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki, 2007. "Economic fluctuations and statistical physics: Quantifying extremely rare and less rare events in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 286-301.
    8. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    9. Naeem, Muhammad & Shahbaz, Muhammad & Saleem, Kashif & Mustafa, Faisal, 2019. "Risk analysis of high frequency precious metals returns by using long memory model," Resources Policy, Elsevier, vol. 61(C), pages 399-409.
    10. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    11. Alvarez-Ramírez, José & Rodríguez, Eduardo, 2012. "Temporal variations of serial correlations of trading volume in the US stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4128-4135.
    12. González-Pla, Francisco & Lovreta, Lidija, 2019. "Persistence in firm’s asset and equity volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    13. Fang, Wen & Ke, Jinchuan & Wang, Jun & Feng, Ling, 2016. "Linking market interaction intensity of 3D Ising type financial model with market volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 531-542.
    14. Pan, Raj Kumar & Sinha, Sitabhra, 2008. "Inverse-cubic law of index fluctuation distribution in Indian markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2055-2065.
    15. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.
    16. Jinquan Liu & Tingguo Zheng & Jianli Sui, 2008. "Dual long memory of inflation and test of the relationship between inflation and inflation uncertainty," Psychometrika, Springer;The Psychometric Society, vol. 3(2), pages 240-254, June.
    17. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    18. Mohamed Chikhi & Anne Péguin-Feissolle & Michel Terraza, 2013. "SEMIFARMA-HYGARCH Modeling of Dow Jones Return Persistence," Computational Economics, Springer;Society for Computational Economics, vol. 41(2), pages 249-265, February.
    19. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    20. Baosheng Yuan & Kan Chen, 2005. "Impact of Investor's Varying Risk Aversion on the Dynamics of Asset Price Fluctuations," Papers physics/0506224, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:385:y:2007:i:2:p:591-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.