IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v536y2019ics0378437119305783.html
   My bibliography  Save this article

Parameter identification for mixed fractional Brownian motions with the drift parameter

Author

Listed:
  • Cai, Chunhao
  • Cheng, Xuwen
  • Xiao, Weilin
  • Wu, Xiang

Abstract

This paper deals with the problem of estimating the unknown parameters in the drift mixed fractional Brownian motion based on discrete-sampled observations. We construct two different estimators for the drift parameter based on the approximation by random walks of the driving noise and prove the consistency of these two estimators. Some numerical simulations are also presented to illustrate the performance of these maximum likelihood estimators. Empirical examples are given to illustrate the potential applications of these proposed estimators.

Suggested Citation

  • Cai, Chunhao & Cheng, Xuwen & Xiao, Weilin & Wu, Xiang, 2019. "Parameter identification for mixed fractional Brownian motions with the drift parameter," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
  • Handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119305783
    DOI: 10.1016/j.physa.2019.04.178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119305783
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Los, Cornelis A. & Yu, Bing, 2008. "Persistence characteristics of the Chinese stock markets," International Review of Financial Analysis, Elsevier, vol. 17(1), pages 64-82.
    2. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    3. Tommi Sottinen, 2001. "Fractional Brownian motion, random walks and binary market models," Finance and Stochastics, Springer, vol. 5(3), pages 343-355.
    4. Zhang, Zhong-Yuan & Gai, Yujie & Wang, Yu-Fei & Cheng, Hui-Min & Liu, Xin, 2018. "On equivalence of likelihood maximization of stochastic block model and constrained nonnegative matrix factorization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 687-697.
    5. Bertin, Karine & Torres, Soledad & Tudor, Ciprian A., 2011. "Drift parameter estimation in fractional diffusions driven by perturbed random walks," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 243-249, February.
    6. Wang, Yudong & Wu, Chongfeng & Pan, Zhiyuan, 2011. "Multifractal detrending moving average analysis on the US Dollar exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3512-3523.
    7. Sidorov, S.P. & Faizliev, A.R. & Balash, V.A. & Korobov, E.A., 2016. "Long-range correlation analysis of economic news flow intensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 205-212.
    8. Çankaya, Mehmet Niyazi & Korbel, Jan, 2018. "Least informative distributions in maximum q-log-likelihood estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 140-150.
    9. Wang, Yudong & Wei, Yu & Wu, Chongfeng, 2011. "Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 864-875.
    10. Tomas Björk & Henrik Hult, 2005. "A note on Wick products and the fractional Black-Scholes model," Finance and Stochastics, Springer, vol. 9(2), pages 197-209, April.
    11. Tse, Y.K. & Anh, V.V. & Tieng, Q., 2002. "Maximum likelihood estimation of the fractional differencing parameter in an ARFIMA model using wavelets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 59(1), pages 153-161.
    12. Wei Li & Fengzhong Wang & Shlomo Havlin & H. Eugene Stanley, 2011. "Financial factor influence on scaling and memory of trading volume in stock market," Papers 1106.1415, arXiv.org.
    13. Björk, Tomas & Hult, Henrik, 2005. "A Note on Wick Products and the Fractional Black-Scholes Model," SSE/EFI Working Paper Series in Economics and Finance 596, Stockholm School of Economics.
    14. Boris Podobnik & Duan Wang & H. Eugene Stanley, 2012. "High-frequency trading model for a complex trading hierarchy," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 559-566, October.
    15. B. Podobnik & D. F. Fu & H. E. Stanley & P. Ch. Ivanov, 2007. "Power-law autocorrelated stochastic processes with long-range cross-correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(1), pages 47-52, March.
    16. Kang, Sang Hoon & Yoon, Seong-Min, 2008. "Long memory features in the high frequency data of the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5189-5196.
    17. Podobnik, Boris & Horvatic, Davor & Lam Ng, Alfonso & Eugene Stanley, H. & Ivanov, Plamen Ch., 2008. "Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3954-3959.
    18. Zhang, Wei-Guo & Li, Zhe & Liu, Yong-Jun, 2018. "Analytical pricing of geometric Asian power options on an underlying driven by a mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 402-418.
    19. Kucharczyk, Daniel & Wyłomańska, Agnieszka & Sikora, Grzegorz, 2018. "Variance change point detection for fractional Brownian motion based on the likelihood ratio test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 439-450.
    20. Gerlich, Nikolas & Rostek, Stefan, 2015. "Estimating serial correlation and self-similarity in financial time series—A diversification approach with applications to high frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 84-98.
    21. Tabak, Benjamin M. & Cajueiro, Daniel O., 2005. "The long-range dependence behavior of the term structure of interest rates in Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 418-426.
    22. Gvozdanovic, Igor & Podobnik, Boris & Wang, Duan & Eugene Stanley, H., 2012. "1/f behavior in cross-correlations between absolute returns in a US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(9), pages 2860-2866.
    23. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    24. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
    25. Faÿ, Gilles & Moulines, Eric & Roueff, François & Taqqu, Murad S., 2009. "Estimators of long-memory: Fourier versus wavelets," Journal of Econometrics, Elsevier, vol. 151(2), pages 159-177, August.
    26. Kang, Sang Hoon & Yoon, Seong-Min, 2007. "Long memory properties in return and volatility: Evidence from the Korean stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 591-600.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:536:y:2019:i:c:s0378437119305783. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.