IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Estimators of long-memory: Fourier versus wavelets

  • Faÿ, Gilles
  • Moulines, Eric
  • Roueff, François
  • Taqqu, Murad S.
Registered author(s):

    Semi-parametric estimation methods of the long-memory exponent of a time series have been studied in several papers, some applied, others theoretical, some using Fourier methods, others using a wavelet-based technique. In this paper, we compare the Fourier and wavelet approaches to the local regression method and to the local Whittle method. We provide an overview of these methods, describe what has been done and indicate the available results and the conditions under which they hold. We discuss their relative strengths and weaknesses both from a practical and a theoretical perspective. We also include a simulation-based comparison. The software written to support this work is available on demand and we illustrate its use at the end of the paper.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Econometrics.

    Volume (Year): 151 (2009)
    Issue (Month): 2 (August)
    Pages: 159-177

    in new window

    Handle: RePEc:eee:econom:v:151:y:2009:i:2:p:159-177
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    2. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
    3. Marc Henry & Peter M Robinson, 2002. "Higher-Order Kernel Semiparametric M-Estimation of Long Memory," STICERD - Econometrics Paper Series 436, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. V Dalla & L Giraitis & J Hidalgo, . "Consistent estimation of the memory parameter for nonlinear time series," Discussion Papers 05/17, Department of Economics, University of York.
    5. E. Moulines & F. Roueff & M. S. Taqqu, 2007. "On the Spectral Density of the Wavelet Coefficients of Long-Memory Time Series with Application to the Log-Regression Estimation of the Memory Parameter," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(2), pages 155-187, 03.
    6. Faÿ, Gilles & Moulines, Eric & Soulier, Philippe, 2004. "Edgeworth expansions for linear statistics of possibly long-range-dependent linear processes," Statistics & Probability Letters, Elsevier, vol. 66(3), pages 275-288, February.
    7. Tanaka, Katsuto, 1999. "The Nonstationary Fractional Unit Root," Econometric Theory, Cambridge University Press, vol. 15(04), pages 549-582, August.
    8. Hurvich, Clifford & Lang, Gabriel & Soulier, Philippe, 2005. "Estimation of Long Memory in the Presence of a Smooth Nonparametric Trend," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 853-871, September.
    9. ANDREWS, DONALD W & Sun, Yixiao X, 2002. "Adaptive Local Polynomial Whittle Estimation of Long-Range Dependence," University of California at San Diego, Economics Working Paper Series qt9wt048tt, Department of Economics, UC San Diego.
    10. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, 07.
    11. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    12. J. Bardet & G. Lang & E. Moulines & P. Soulier, 2000. "Wavelet Estimator of Long-Range Dependent Processes," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 85-99, January.
    13. Shimotsu, Katsumi & Phillips, Peter C.B., 2006. "Local Whittle estimation of fractional integration and some of its variants," Journal of Econometrics, Elsevier, vol. 130(2), pages 209-233, February.
    14. Velasco, Carlos, 1998. "Non-Gaussian log-periodogram regression," DES - Working Papers. Statistics and Econometrics. WS 4553, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Stoev, Stilian & Taqqu, Murad S. & Park, Cheolwoo & Michailidis, George & Marron, J.S., 2006. "LASS: a tool for the local analysis of self-similarity," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2447-2471, May.
    16. Hurvich, Clifford M. & Moulines, Eric & Soulier, Philippe, 2002. "The FEXP estimator for potentially non-stationary linear time series," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 307-340, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:151:y:2009:i:2:p:159-177. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Shamier, Wendy)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.