IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v97y2002i2p307-340.html
   My bibliography  Save this article

The FEXP estimator for potentially non-stationary linear time series

Author

Listed:
  • Hurvich, Clifford M.
  • Moulines, Eric
  • Soulier, Philippe

Abstract

We consider semiparametric fractional exponential (FEXP) estimators of the memory parameter d for a potentially non-stationary linear long-memory time series with additive polynomial trend. We use differencing to annihilate the polynomial trend, followed by tapering to handle the potential non-invertibility of the differenced series. We propose a method of pooling the tapered periodogram which leads to more efficient estimators of d than existing pooled, tapered estimators. We establish asymptotic normality of the tapered FEXP estimator in the Gaussian case with or without pooling. We establish asymptotic normality of the estimator in the linear case if pooling is used. Finally, we consider minimax rate-optimality and feasible nearly rate-optimal estimators in the Gaussian case.

Suggested Citation

  • Hurvich, Clifford M. & Moulines, Eric & Soulier, Philippe, 2002. "The FEXP estimator for potentially non-stationary linear time series," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 307-340, February.
  • Handle: RePEc:eee:spapps:v:97:y:2002:i:2:p:307-340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(01)00136-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 183-207, February.
    2. Clifford M. Hurvich & Julia Brodsky, 2001. "Broadband Semiparametric Estimation of the Memory Parameter of a Long‐Memory Time Series Using Fractional Exponential Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 221-249, March.
    3. Velasco, Carlos, 2000. "Non-Gaussian Log-Periodogram Regression," Econometric Theory, Cambridge University Press, vol. 16(1), pages 44-79, February.
    4. Liudas Giraitis & Peter M Robinson & Alexander Samarov, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter - (Now published with revised title, Adaptive Rate-Optimal Estimation of the Memory Parameter, in Journal of Multivariate Analysis, 72 (2000)," STICERD - Econometrics Paper Series 379, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    5. Clifford M. Hurvich & Bonnie K. Ray, 1995. "Estimation Of The Memory Parameter For Nonstationary Or Noninvertible Fractionally Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(1), pages 17-41, January.
    6. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    7. Soulier, Philippe, 2001. "Moment bounds and central limit theorem for functions of Gaussian vectors," Statistics & Probability Letters, Elsevier, vol. 54(2), pages 193-203, September.
    8. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    9. G. J. Janacek, 1982. "Determining The Degree Of Differencing For Time Series Via The Log Spectrum," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(3), pages 177-183, May.
    10. Liudas Giraitis & Peter M. Robinson & Alexander Samarov, 1997. "Rate Optimal Semiparametric Estimation Of The Memory Parameter Of The Gaussian Time Series With Long‐Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(1), pages 49-60, January.
    11. R J Bhansali & L Giraitis & P Kokoszka, "undated". "Estimation of the long memory parameter by fitting fractionally differenced autoregressive models," Discussion Papers 05/20, Department of Economics, University of York.
    12. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive semiparametric estimation of the memory parameter," LSE Research Online Documents on Economics 2082, London School of Economics and Political Science, LSE Library.
    13. Fay, Gilles & Soulier, Philippe, 2001. "The periodogram of an i.i.d. sequence," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 315-343, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsieh, Meng-Chen & Hurvich, Clifford M. & Soulier, Philippe, 2007. "Asymptotics for duration-driven long range dependent processes," Journal of Econometrics, Elsevier, vol. 141(2), pages 913-949, December.
    2. Jan Beran & Sucharita Ghosh, 2020. "Estimating the Mean Direction of Strongly Dependent Circular Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 210-228, March.
    3. Willa Chen & Clifford Hurvich, 2004. "Semiparametric Estimation of Fractional Cointegrating Subspaces," Econometrics 0412007, University Library of Munich, Germany.
    4. Chen, Willa W. & Hurvich, Clifford M., 2003. "Estimating fractional cointegration in the presence of polynomial trends," Journal of Econometrics, Elsevier, vol. 117(1), pages 95-121, November.
    5. Yixiao Sun, 2005. "Adaptive Estimation of the Regression Discontinuity Model," Econometrics 0506003, University Library of Munich, Germany.
    6. Faÿ, Gilles & Moulines, Eric & Roueff, François & Taqqu, Murad S., 2009. "Estimators of long-memory: Fourier versus wavelets," Journal of Econometrics, Elsevier, vol. 151(2), pages 159-177, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masaki Narukawa & Yasumasa Matsuda, 2008. "Broadband semiparametric estimation of the long-memory parameter by the likelihood-based FEXP approach," TERG Discussion Papers 239, Graduate School of Economics and Management, Tohoku University.
    2. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    3. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
    4. Giraitis, Liudas & Robinson, Peter, 2002. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 2130, London School of Economics and Political Science, LSE Library.
    5. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    6. J. Arteche, 2012. "Semiparametric Inference in Correlated Long Memory Signal Plus Noise Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(4), pages 440-474.
    7. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    8. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    9. Arteche, Josu & Orbe, Jesus, 2009. "Using the bootstrap for finite sample confidence intervals of the log periodogram regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1940-1953, April.
    10. Chang Sik Kim & Peter C.B. Phillips, 2006. "Log Periodogram Regression: The Nonstationary Case," Cowles Foundation Discussion Papers 1587, Cowles Foundation for Research in Economics, Yale University.
    11. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    12. Feng, Yuanhua & Beran, Jan, 2008. "Filtered Log-periodogram Regression of long memory processes," CoFE Discussion Papers 08/10, University of Konstanz, Center of Finance and Econometrics (CoFE).
    13. Faÿ, Gilles, 2010. "Moment bounds for non-linear functionals of the periodogram," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 983-1009, June.
    14. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 183-207, February.
    15. Arteche González, Jesús María & Orbe Lizundia, Jesús María, 2008. "Selection of the number of frequencies using bootstrap techniques in log-periodogram regression," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    16. Faÿ, Gilles & Moulines, Eric & Roueff, François & Taqqu, Murad S., 2009. "Estimators of long-memory: Fourier versus wavelets," Journal of Econometrics, Elsevier, vol. 151(2), pages 159-177, August.
    17. Saeed Heravi & Kerry Patterson, 2005. "Optimal And Adaptive Semi‐Parametric Narrowband And Broadband And Maximum Likelihood Estimation Of The Long‐Memory Parameter For Real Exchange Rates," Manchester School, University of Manchester, vol. 73(2), pages 165-213, March.
    18. Guglielmo Maria Caporale & Luis A. Gil-Alana & Alex Plastun, 2017. "Long Memory and Data Frequency in Financial Markets," CESifo Working Paper Series 6396, CESifo.
    19. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Is market fear persistent? A long-memory analysis," Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.
    20. Adam McCloskey, 2013. "Estimation of the long-memory stochastic volatility model parameters that is robust to level shifts and deterministic trends," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(3), pages 285-301, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:97:y:2002:i:2:p:307-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.