IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v22y2001i2p221-249.html
   My bibliography  Save this article

Broadband Semiparametric Estimation of the Memory Parameter of a Long‐Memory Time Series Using Fractional Exponential Models

Author

Listed:
  • Clifford M. Hurvich
  • Julia Brodsky

Abstract

We consider a fractional exponential, or FEXP estimator of the memory parameter of a stationary Gaussian long‐memory time series. The estimator is constructed by fitting a FEXP model of slowly increasing dimension to the log periodogram at all Fourier frequencies by ordinary least squares, and retaining the corresponding estimated memory parameter. We do not assume that the data were necessarily generated by a FEXP model, or by any other finite‐parameter model. We do, however, impose a global differentiability assumption on the spectral density except at the origin. Because of this, and its use of all Fourier frequencies, we refer to the FEXP estimator as a broadband semiparametric estimator. We demonstrate the consistency of the FEXP estimator, and obtain expressions for its asymptotic bias and variance. If the true spectral density is sufficiently smooth, the FEXP estimator can strongly outperform existing semiparametric estimators, such as the Geweke–Porter‐Hudak (GPH) and Gaussian semiparametric estimators (GSE), attaining an asymptotic mean squared error proportional to (log n)/n, where n is the sample size. In a simulation study, we demonstrate the merits of using a finite‐sample correction to the asymptotic variance, and we also explore the possibility of automatically selecting the dimension of the exponential model using Mallows’CL criterion.

Suggested Citation

  • Clifford M. Hurvich & Julia Brodsky, 2001. "Broadband Semiparametric Estimation of the Memory Parameter of a Long‐Memory Time Series Using Fractional Exponential Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 221-249, March.
  • Handle: RePEc:bla:jtsera:v:22:y:2001:i:2:p:221-249
    DOI: 10.1111/1467-9892.00220
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00220
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masaki Narukawa & Yasumasa Matsuda, 2008. "Broadband semiparametric estimation of the long-memory parameter by the likelihood-based FEXP approach," TERG Discussion Papers 239, Graduate School of Economics and Management, Tohoku University.
    2. Robinson, Peter M. & Henry, Marc, 2003. "Higher-order kernel semiparametric M-estimation of long memory," Journal of Econometrics, Elsevier, vol. 114(1), pages 1-27, May.
    3. Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
    4. Hurvich, Clifford M. & Moulines, Eric & Soulier, Philippe, 2002. "The FEXP estimator for potentially non-stationary linear time series," Stochastic Processes and their Applications, Elsevier, vol. 97(2), pages 307-340, February.
    5. García-Enríquez, Javier & Hualde, Javier, 2019. "Local Whittle estimation of long memory: Standard versus bias-reducing techniques," Econometrics and Statistics, Elsevier, vol. 12(C), pages 66-77.
    6. Bhansali, R. J. & Kokoszka, P. S., 2002. "Computation of the forecast coefficients for multistep prediction of long-range dependent time series," International Journal of Forecasting, Elsevier, vol. 18(2), pages 181-206.
    7. Hurvich, Clifford M., 2002. "Multistep forecasting of long memory series using fractional exponential models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 167-179.
    8. Kanchana Nadarajah & Gael M Martin & Donald S Poskitt, 2019. "Optimal Bias Correction of the Log-periodogram Estimator of the Fractional Parameter: A Jackknife Approach," Monash Econometrics and Business Statistics Working Papers 7/19, Monash University, Department of Econometrics and Business Statistics.
    9. Liudas Giraitis & Peter M Robinson, 2002. "Edgeworth Expansions for Semiparametric Whittle Estimation of Long Memory," STICERD - Econometrics Paper Series 438, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Chen, Yen-Hung & Hsu, Nan-Jung, 2014. "A frequency domain test for detecting nonstationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 179-189.
    11. Javier Hualde & Peter M Robinson, 2006. "Semiparametric Estimation of Fractional Cointegration," STICERD - Econometrics Paper Series 502, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    13. Jan Beran & Sucharita Ghosh, 2020. "Estimating the Mean Direction of Strongly Dependent Circular Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 210-228, March.
    14. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.
    15. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    16. Giraitis, Liudas & Robinson, Peter, 2002. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 2130, London School of Economics and Political Science, LSE Library.
    17. Hualde, Javier & Robinson, Peter M., 2006. "Semiparametric Estimation of Fractional Cointegration," LSE Research Online Documents on Economics 4537, London School of Economics and Political Science, LSE Library.
    18. Bhansali, R.J. & Giraitis, L. & Kokoszka, P.S., 2006. "Estimation of the memory parameter by fitting fractionally differenced autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2101-2130, November.
    19. Masaki Narukawa, 2016. "Semiparametric Whittle estimation of a cyclical long-memory time series based on generalised exponential models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 272-295, June.
    20. Dalla, Violetta & Giraitis, Liudas & Hidalgo, Javier, 2006. "Consistent estimation of the memory parameter for nonlinear time series," LSE Research Online Documents on Economics 6813, London School of Economics and Political Science, LSE Library.
    21. Chen, Willa W. & Hurvich, Clifford M., 2003. "Estimating fractional cointegration in the presence of polynomial trends," Journal of Econometrics, Elsevier, vol. 117(1), pages 95-121, November.
    22. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    23. Giraitis, L. & Robinson, P.M., 2003. "Edgeworth expansions for semiparametric Whittle estimation of long memory," LSE Research Online Documents on Economics 291, London School of Economics and Political Science, LSE Library.
    24. Violetta Dalla & Liudas Giraitis & Javier Hidalgo, 2006. "Consistent estimation of the memory parameterfor nonlinear time series," STICERD - Econometrics Paper Series 497, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:22:y:2001:i:2:p:221-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.