IDEAS home Printed from https://ideas.repec.org/p/bro/econwp/2012-17.html
   My bibliography  Save this paper

Estimation of the Long-Memory Stochastic Volatility Model Parameters that is Robust to Level Shifts and Deterministic Trends

Author

Abstract

I provide conditions under which the trimmed FDQML estimator, advanced by McCloskey (2010) in the context of fully parametric short-memory models, can be used to estimate the long-memory stochastic volatility model parameters in the presence of additive low-frequency contamination in log-squared returns. The types of lowfrequency contamination covered include level shifts as well as deterministic trends. I establish consistency and asymptotic normality in the presence or absence of such lowfrequency contamination under certain conditions on the growth rate of the trimming parameter. I also provide theoretical guidance on the choice of trimming parameter by heuristically obtaining its asymptotic MSE-optimal rate under certain types of lowfrequency contamination. A simulation study examines the finite sample properties of the robust estimator, showing substantial gains from its use in the presence of level shifts. The finite sample analysis also explores how different levels of trimming affect the parameter estimates in the presence and absence of low-frequency contamination and long-memory.

Suggested Citation

  • Adam McCloskey, 2012. "Estimation of the Long-Memory Stochastic Volatility Model Parameters that is Robust to Level Shifts and Deterministic Trends," Working Papers 2012-17, Brown University, Department of Economics.
  • Handle: RePEc:bro:econwp:2012-17
    as

    Download full text from publisher

    File URL: https://economics.brown.edu/sites/g/files/dprerj726/files/papers/2012-17_paper.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Per Frederiksen & Morten Orregaard Nielsen, 2008. "Bias-Reduced Estimation of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 496-512, Fall.
    2. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
    3. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    4. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    5. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    6. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(4), pages 686-710, August.
    7. Zhongjun Qu, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 423-438, July.
    8. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    9. Clifford M. Hurvich & Bonnie K. Ray, 1995. "Estimation Of The Memory Parameter For Nonstationary Or Noninvertible Fractionally Integrated Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 16(1), pages 17-41, January.
    10. George Kapetanios & Fotis Papailias, 2011. "Block Bootstrap and Long Memory," Working Papers 679, Queen Mary University of London, School of Economics and Finance.
    11. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    12. D. S. Poskitt, 2008. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non‐Invertible Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(2), pages 224-250, March.
    13. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    14. Adam McCloskey & Jonathan B. Hill, 2017. "Parameter Estimation Robust to Low-Frequency Contamination," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 598-610, October.
    15. Fabrizio Iacone, 2010. "Local Whittle estimation of the memory parameter in presence of deterministic components," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 37-49, January.
    16. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    17. Perez, Ana & Ruiz, Esther, 2001. "Finite sample properties of a QML estimator of stochastic volatility models with long memory," Economics Letters, Elsevier, vol. 70(2), pages 157-164, February.
    18. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
    19. George Kapetanios & Fotis Papailias, 2011. "Block Bootstrap and Long Memory," Working Papers 679, Queen Mary University of London, School of Economics and Finance.
    20. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    21. Robinson, Peter M., 1997. "Large-sample inference for nonparametric regression with dependent errors," LSE Research Online Documents on Economics 302, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arteche, Josu & García-Enríquez, Javier, 2017. "Singular Spectrum Analysis for signal extraction in Stochastic Volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 85-98.
    2. Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
    3. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    4. Matei Demetrescu & Mehdi Hosseinkouchack, 2022. "Autoregressive spectral estimates under ignored changes in the mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 329-340, March.
    5. Marie Busch & Philipp Sibbertsen, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Econometrics, MDPI, vol. 6(1), pages 1-21, March.
    6. Heni Boubaker, 2016. "A Comparative Study of the Performance of Estimating Long-Memory Parameter Using Wavelet-Based Entropies," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 693-731, December.
    7. Dalla, Violetta & Giraitis, Liudas & Robinson, Peter M., 2020. "Asymptotic theory for time series with changing mean and variance," Journal of Econometrics, Elsevier, vol. 219(2), pages 281-313.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    3. Marie Busch & Philipp Sibbertsen, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Econometrics, MDPI, vol. 6(1), pages 1-21, March.
    4. Mccloskey, Adam & Perron, Pierre, 2013. "Memory Parameter Estimation In The Presence Of Level Shifts And Deterministic Trends," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1196-1237, December.
    5. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2017. "The Memory of Volatility," Hannover Economic Papers (HEP) dp-601, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    6. Rasmus T. Varneskov & Pierre Perron, 2018. "Combining long memory and level shifts in modelling and forecasting the volatility of asset returns," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 371-393, March.
    7. Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
    8. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    9. Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
    10. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    11. Matei Demetrescu & Mehdi Hosseinkouchack, 2022. "Autoregressive spectral estimates under ignored changes in the mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 329-340, March.
    12. J. Arteche, 2012. "Semiparametric Inference in Correlated Long Memory Signal Plus Noise Models," Econometric Reviews, Taylor & Francis Journals, vol. 31(4), pages 440-474.
    13. Leschinski, Christian & Sibbertsen, Philipp, 2018. "The Periodogram of Spurious Long-Memory Processes," Hannover Economic Papers (HEP) dp-632, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Renzo Pardo Figueroa & Gabriel Rodríguez, 2014. "Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America," Documentos de Trabajo / Working Papers 2014-395, Departamento de Economía - Pontificia Universidad Católica del Perú.
    15. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    16. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    17. Per Frederiksen & Frank S. Nielsen, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-59, Department of Economics and Business Economics, Aarhus University.
    18. Arteche, Josu & García-Enríquez, Javier, 2017. "Singular Spectrum Analysis for signal extraction in Stochastic Volatility models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 85-98.
    19. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.

    More about this item

    Keywords

    stochastic volatility; frequency domain estimation; robust estimation; spurious persistence; long-memory; level shifts; structural change; deterministic trends;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bro:econwp:2012-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brown Economics Webmaster (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.