IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Estimation of the Long-Memory Stochastic Volatility Model Parameters that is Robust to Level Shifts and Deterministic Trends

I provide conditions under which the trimmed FDQML estimator, advanced by McCloskey (2010) in the context of fully parametric short-memory models, can be used to estimate the long-memory stochastic volatility model parameters in the presence of additive low-frequency contamination in log-squared returns. The types of lowfrequency contamination covered include level shifts as well as deterministic trends. I establish consistency and asymptotic normality in the presence or absence of such lowfrequency contamination under certain conditions on the growth rate of the trimming parameter. I also provide theoretical guidance on the choice of trimming parameter by heuristically obtaining its asymptotic MSE-optimal rate under certain types of lowfrequency contamination. A simulation study examines the finite sample properties of the robust estimator, showing substantial gains from its use in the presence of level shifts. The finite sample analysis also explores how different levels of trimming affect the parameter estimates in the presence and absence of low-frequency contamination and long-memory.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.brown.edu/academics/economics/sites/brown.edu.academics.economics/files/uploads/2012-17_paper.pdf
Download Restriction: no

Paper provided by Brown University, Department of Economics in its series Working Papers with number 2012-17.

as
in new window

Length:
Date of creation: 2012
Date of revision:
Handle: RePEc:bro:econwp:2012-17
Contact details of provider: Postal: Department of Economics, Brown University, Providence, RI 02912

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  2. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
  3. Adam McCloskey & Pierre Perron, 2012. "Memory Parameter Estimation in the Presence of Level Shifts and Deterministic Trends," Working Papers 2012-15, Brown University, Department of Economics.
  4. Qu, Zhongjun, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 423-438.
  5. Yixiao Sun & Peter C.B. Phillips, 2002. "Nonlinear Log-Periodogram Regression for Perturbed Fractional Processes," Cowles Foundation Discussion Papers 1366, Cowles Foundation for Research in Economics, Yale University.
  6. Per Frederiksen & Morten ├śrregaard Nielsen, 2008. "Bias-reduced estimation of long memory stochastic volatility," CREATES Research Papers 2008-35, School of Economics and Management, University of Aarhus.
  7. Fabrizio Iacone, 2010. "Local Whittle estimation of the memory parameter in presence of deterministic components," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 37-49, 01.
  8. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
  9. George Kapetanios & Fotis Papailias, 2011. "Block Bootstrap and Long Memory," Working Papers 679, Queen Mary University of London, School of Economics and Finance.
  10. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  11. Clifford Hurvich & Eric Moulines & Philippe Soulier, 2004. "Estimating Long Memory in Volatility," Econometrics 0412006, EconWPA.
  12. Perez, Ana & Ruiz, Esther, 2001. "Finite sample properties of a QML estimator of stochastic volatility models with long memory," Economics Letters, Elsevier, vol. 70(2), pages 157-164, February.
  13. Pierre Perron & Zhongjun Qu, 2008. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-004, Boston University - Department of Economics.
  14. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
  15. D. S. Poskitt, 2006. "Properties of the Sieve Bootstrap for Fractionally Integrated and Non-Invertible Processes," Monash Econometrics and Business Statistics Working Papers 12/06, Monash University, Department of Econometrics and Business Statistics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bro:econwp:2012-17. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Brown Economics Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.