IDEAS home Printed from https://ideas.repec.org/p/arx/papers/0706.1836.html
   My bibliography  Save this paper

Long Memory in Nonlinear Processes

Author

Listed:
  • Rohit Deo

    (IOMS)

  • Meng-Chen Hsieh

    (IOMS)

  • Clifford M. Hurvich

    (IOMS)

  • Philippe Soulier

    (MODAL'X)

Abstract

It is generally accepted that many time series of practical interest exhibit strong dependence, i.e., long memory. For such series, the sample autocorrelations decay slowly and log-log periodogram plots indicate a straight-line relationship. This necessitates a class of models for describing such behavior. A popular class of such models is the autoregressive fractionally integrated moving average (ARFIMA) which is a linear process. However, there is also a need for nonlinear long memory models. For example, series of returns on financial assets typically tend to show zero correlation, whereas their squares or absolute values exhibit long memory. Furthermore, the search for a realistic mechanism for generating long memory has led to the development of other nonlinear long memory models. In this chapter, we will present several nonlinear long memory models, and discuss the properties of the models, as well as associated parametric andsemiparametric estimators.

Suggested Citation

  • Rohit Deo & Meng-Chen Hsieh & Clifford M. Hurvich & Philippe Soulier, 2007. "Long Memory in Nonlinear Processes," Papers 0706.1836, arXiv.org.
  • Handle: RePEc:arx:papers:0706.1836
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/0706.1836
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
    2. Chen, Willa W. & Hurvich, Clifford M. & Lu, Yi, 2006. "On the Correlation Matrix of the Discrete Fourier Transform and the Fast Solution of Large Toeplitz Systems for Long-Memory Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 812-822, June.
    3. Rohit Deo & Mengchen Hsieh & Clifford Hurvich, 2005. "Tracing the Source of Long Memory in Volatility," Econometrics 0501005, EconWPA.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    6. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    7. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
    8. Liu, Ming, 2000. "Modeling long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 99(1), pages 139-171, November.
    9. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
    10. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    11. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    12. Robinson, P. M., 2001. "The memory of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 101(2), pages 195-218, April.
    13. Velasco, Carlos, 2000. "Non-Gaussian Log-Periodogram Regression," Econometric Theory, Cambridge University Press, vol. 16(01), pages 44-79, February.
    14. Paul Doukhan & Gilles Teyssière & Pablo Winant, 2005. "A Larch Vector Valued Process," Working Papers 2005-49, Center for Research in Economics and Statistics.
    15. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    16. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(3), pages 445-470.
    17. Rohit Deo & Clifford Hurvich & Philippe Soulier & Yi Wang, 2005. "Propagation of Memory Parameter from Durations to Counts," Econometrics 0511010, EconWPA.
    18. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    19. Hurvich, Clifford M. & Soulier, Philippe, 2002. "Testing For Long Memory In Volatility," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1291-1308, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsieh, Meng-Chen & Hurvich, Clifford M. & Soulier, Philippe, 2007. "Asymptotics for duration-driven long range dependent processes," Journal of Econometrics, Elsevier, vol. 141(2), pages 913-949, December.
    2. Kulik, Rafal & Soulier, Philippe, 2011. "The tail empirical process for long memory stochastic volatility sequences," Stochastic Processes and their Applications, Elsevier, vol. 121(1), pages 109-134, January.
    3. Kuswanto, Heri & Sibbertsen, Philipp, 2008. "A Study on "Spurious Long Memory in Nonlinear Time Series Models"," Hannover Economic Papers (HEP) dp-410, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:0706.1836. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.