IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v76y2008i3p661-662.html
   My bibliography  Save this article

Corrigendum to "Estimating Long Memory in Volatility"

Author

Listed:
  • Clifford M. Hurvich
  • Eric Moulines
  • Philippe Soulier

Abstract

We consider semiparametric estimation of the memory parameter in a model that includes as special cases both long-memory stochastic volatility and fractionally integrated exponential GARCH (FIEGARCH) models. Under our general model the logarithms of the squared returns can be decomposed into the sum of a long-memory signal and a white noise. We consider periodogram-based estimators using a local Whittle criterion function. We allow the optional inclusion of an additional term to account for possible correlation between the signal and noise processes, as would occur in the FIEGARCH model. We also allow for potential nonstationarity in volatility by allowing the signal process to have a memory parameter d-super-*⩾1/2. We show that the local Whittle estimator is consistent for d-super-* is an element of (0,1). We also show that the local Whittle estimator is asymptotically normal for d-super-* is an element of (0,3/4) and essentially recovers the optimal semiparametric rate of convergence for this problem. In particular, if the spectral density of the short-memory component of the signal is sufficiently smooth, a convergence rate of n-super-2/5 - δ for d-super-* is an element of (0,3/4) can be attained, where n is the sample size and δ>0 is arbitrarily small. This represents a strong improvement over the performance of existing semiparametric estimators of persistence in volatility. We also prove that the standard Gaussian semiparametric estimator is asymptotically normal if d-super-*=0. This yields a test for long memory in volatility. Copyright The Econometric Society 2005.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2008. "Corrigendum to "Estimating Long Memory in Volatility"," Econometrica, Econometric Society, vol. 76(3), pages 661-662, May.
  • Handle: RePEc:ecm:emetrp:v:76:y:2008:i:3:p:661-662
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0262.2008.00851.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:76:y:2008:i:3:p:661-662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.