IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v51y2006i4p2118-2141.html
   My bibliography  Save this article

Semiparametric estimation in perturbed long memory series

Author

Listed:
  • Arteche, J.

Abstract

The estimation of the memory parameter in perturbed long memory series has recently attracted attention motivated especially by the strong persistence of the volatility in many financial and economic time series and the use of Long Memory in Stochastic Volatility (LMSV) processes to model such a behaviour. This paper discusses frequency domain semiparametric estimation of the memory parameter and proposes an extension of the log periodogram regression which explicitly accounts for the added noise, comparing it, asymptotically and in finite samples, with similar extant techniques. Contrary to the non linear log periodogram regression of Sun and Phillips, we do not use a linear approximation of the logarithmic term which accounts for the added noise. A reduction of the asymptotic bias is achieved in this way and makes possible a faster convergence by permitting a larger bandwidth. Monte Carlo results confirm this bias reduction in finite samples. An application to a series of returns of the Spanish Ibex35 stock index is finally included.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Arteche, J., 2006. "Semiparametric estimation in perturbed long memory series," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2118-2141, December.
  • Handle: RePEc:eee:csdana:v:51:y:2006:i:4:p:2118-2141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(06)00239-8
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donald W. K. Andrews & Patrik Guggenberger, 2003. "A Bias--Reduced Log--Periodogram Regression Estimator for the Long--Memory Parameter," Econometrica, Econometric Society, vol. 71(2), pages 675-712, March.
    2. Perez, Ana & Ruiz, Esther, 2001. "Finite sample properties of a QML estimator of stochastic volatility models with long memory," Economics Letters, Elsevier, vol. 70(2), pages 157-164, February.
    3. Arteche, Josu & Robinson, Peter M., 1998. "Seasonal and cyclical long memory," LSE Research Online Documents on Economics 2241, London School of Economics and Political Science, LSE Library.
    4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    5. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    6. J. Arteche & C. Velasco, 2005. "Trimming and Tapering Semi-Parametric Estimates in Asymmetric Long Memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 581-611, July.
    7. Giraitis, Liudas & Robinson, Peter M. & Samarov, Alexander, 2000. "Adaptive Semiparametric Estimation of the Memory Parameter," Journal of Multivariate Analysis, Elsevier, vol. 72(2), pages 183-207, February.
    8. Velasco, Carlos, 1999. "Non-stationary log-periodogram regression," Journal of Econometrics, Elsevier, vol. 91(2), pages 325-371, August.
    9. Robinson, Peter M. & Henry, Marc, 2003. "Higher-order kernel semiparametric M-estimation of long memory," Journal of Econometrics, Elsevier, vol. 114(1), pages 1-27, May.
    10. Donald W. K. Andrews & Yixiao Sun, 2004. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Econometrica, Econometric Society, vol. 72(2), pages 569-614, March.
    11. Sun, Yixiao & Phillips, Peter C. B., 2003. "Nonlinear log-periodogram regression for perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 115(2), pages 355-389, August.
    12. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    13. Deo, Rohit S. & Hurvich, Clifford M., 2001. "On The Log Periodogram Regression Estimator Of The Memory Parameter In Long Memory Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 17(04), pages 686-710, August.
    14. Velasco, Carlos, 2000. "Non-Gaussian Log-Periodogram Regression," Econometric Theory, Cambridge University Press, vol. 16(01), pages 44-79, February.
    15. Arteche, Josu, 2004. "Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models," Journal of Econometrics, Elsevier, vol. 119(1), pages 131-154, March.
    16. Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(3), pages 445-470.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josu Arteche, 2012. "Standard and seasonal long memory in volatility: an application to Spanish inflation," Empirical Economics, Springer, vol. 42(3), pages 693-712, June.
    2. Artiach, Miguel & Arteche, Josu, 2012. "Doubly fractional models for dynamic heteroscedastic cycles," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 2139-2158.
    3. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    4. Bordignon, Silvano & Caporin, Massimiliano & Lisi, Francesco, 2007. "Generalised long-memory GARCH models for intra-daily volatility," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 5900-5912, August.
    5. Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
    6. Coakley, Jerry & Dollery, Jian & Kellard, Neil, 2008. "The role of long memory in hedging effectiveness," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3075-3082, February.
    7. Ruiz, Esther & Veiga, Helena, 2008. "Modelling long-memory volatilities with leverage effect: A-LMSV versus FIEGARCH," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2846-2862, February.
    8. Arteche, Josu & Orbe, Jesus, 2016. "A bootstrap approximation for the distribution of the Local Whittle estimator," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 645-660.
    9. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    10. Arteche González, Jesús María & Orbe Lizundia, Jesús María, 2008. "Selection of the number of frequencies using bootstrap techniques in log-periodogram regression," BILTOKI 2008-01, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    11. Arteche, Josu & Orbe, Jesus, 2009. "Using the bootstrap for finite sample confidence intervals of the log periodogram regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1940-1953, April.
    12. Arteche González, Jesús María, 2010. "Semiparametric inference in correlated long memory signal plus noise models," BILTOKI 2010-04, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    13. Per Frederiksen & Frank S. Nielsen, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-59, Department of Economics and Business Economics, Aarhus University.
    14. Busch, Marie & Sibbertsen, Philipp, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Hannover Economic Papers (HEP) dp-628, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    15. Josu Arteche & Jesus Orbe, 2009. "Bootstrap-based bandwidth choice for log-periodogram regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 591-617, November.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:51:y:2006:i:4:p:2118-2141. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.