IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article

Modelling long-memory volatilities with leverage effect: A-LMSV versus FIEGARCH

  • Ruiz, Esther
  • Veiga, Helena

A new stochastic volatility model, called A-LMSV, is proposed to cope simultaneously with leverage effect and long-memory in volatility. Its statistical properties are derived and compared with the properties of the FIEGARCH model. It is shown that the dependence of the autocorrelations of squares on the parameters measuring the asymmetry and the persistence is different in both models. The kurtosis and autocorrelations of squares do not depend on the asymmetry in the A-LMSV model while they increase with the asymmetry in the FIEGARCH model. Furthermore, the autocorrelations of squares increase with the persistence in the A-LMSV model and decrease in the FIEGARCH model. On the other hand, if the correlation between returns and future volatilities is negative, the autocorrelations of absolute returns increase with the magnitude of the asymmetry in the FIEGARCH model while they decrease in the A-LMSV model. Finally, the cross-correlations between squares and original observations are, in general, larger in absolute value in the FIEGARCH model than in the A-LMSV model. The results are illustrated by fitting both models to represent the dynamic evolution of volatilities of daily returns of the S&P500 and DAX indexes.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(07)00354-4
Download Restriction: Full text for ScienceDirect subscribers only.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

Volume (Year): 52 (2008)
Issue (Month): 6 (February)
Pages: 2846-2862

as
in new window

Handle: RePEc:eee:csdana:v:52:y:2008:i:6:p:2846-2862
Contact details of provider: Web page: http://www.elsevier.com/locate/csda

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  2. Hafner, Christian M. & Herwartz, Helmut, 1998. "Testing for linear autoregressive dynamics under heteroskedasticity," SFB 373 Discussion Papers 1999,7, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  3. He, Changli & Ter svirta, Timo & Malmsten, Hans, 2002. "Moment Structure Of A Family Of First-Order Exponential Garch Models," Econometric Theory, Cambridge University Press, vol. 18(04), pages 868-885, August.
  4. Ana Pérez & Esther Ruiz, 2003. "Properties of the Sample Autocorrelations of Nonlinear Transformations in Long-Memory Stochastic Volatility Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 1(3), pages 420-444.
  5. Chernov, Mikhail & Gallant, A. Ronald & Ghysels, Eric & Tauchen, George, 2002. "Alternative Models for Stock Price Dynamic," Working Papers 02-03, Duke University, Department of Economics.
  6. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
  7. Liesenfeld, Roman & Jung, Robert C., 1997. "Stochastic volatility models: Conditional normality versus heavy tailed distributions," Tübinger Diskussionsbeiträge 103, University of Tübingen, School of Business and Economics.
  8. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  9. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
  10. Meyer, Renate & Yu, Jun, 2000. "BUGS for a Bayesian Analysis of Stochastic Volatility Models," Working Papers 206, Department of Economics, The University of Auckland.
  11. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
  12. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 319-342.
  13. M. Angeles Carnero & Daniel Peña & Esther Ruiz, 2007. "Effects of outliers on the identification and estimation of GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(4), pages 471-497, 07.
  14. Ruiz, Esther & Perez, Ana, 2003. "Asymmetric long memory GARCH: a reply to Hwang's model," Economics Letters, Elsevier, vol. 78(3), pages 415-422, March.
  15. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  16. Arteche González, Jesús María, 2005. "Semiparametric estimation in perturbed long memory series," BILTOKI 2005-02, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
  17. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1995. "Estimation of Stochastic Volatility Models with Diagnostics," Working Papers 95-36, Duke University, Department of Economics.
  18. Ruiz, Esther & Pérez, Ana & Mora Galán, Alberto, 2004. "Stochastic volatility models and the Taylor effect," DES - Working Papers. Statistics and Econometrics. WS ws046315, Universidad Carlos III de Madrid. Departamento de Estadística.
  19. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
  20. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
  21. Yasuhiro Omori & Toshiaki Watanabe, 2007. "Block Sampler and Posterior Mode Estimation for Asymmetric Stochastic Volatility Models," CIRJE F-Series CIRJE-F-507, CIRJE, Faculty of Economics, University of Tokyo.
  22. So, Mike K P & Li, W K & Lam, K, 2002. "A Threshold Stochastic Volatility Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 473-500, November.
  23. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  24. Hwang, Y., 2001. "Asymmetric long memory GARCH in exchange return," Economics Letters, Elsevier, vol. 73(1), pages 1-5, October.
  25. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
  26. Andersson, Jonas, 2001. "On the Normal Inverse Gaussian Stochastic Volatility Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 44-54, January.
  27. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  28. Zaffaroni, Paolo, 2004. "STATIONARITY AND MEMORY OF ARCH([infty infinity]) MODELS," Econometric Theory, Cambridge University Press, vol. 20(01), pages 147-160, February.
  29. E. Ruiz & M.A. Carnero & D. Pereira, 2004. "Effects of Level Outliers on the Identification and Estimation of GARCH Models," Econometric Society 2004 Australasian Meetings 21, Econometric Society.
  30. Perez, Ana & Ruiz, Esther, 2001. "Finite sample properties of a QML estimator of stochastic volatility models with long memory," Economics Letters, Elsevier, vol. 70(2), pages 157-164, February.
  31. Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
  32. Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.
  33. Lobato, Ignacio N & Velasco, Carlos, 2000. "Long Memory in Stock-Market Trading Volume," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 410-27, October.
  34. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  35. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-34, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:6:p:2846-2862. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.