IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Persistence and Kurtosis in GARCH and Stochastic Volatility Models

  • M. Angeles Carnero

This article shows that the relationship between kurtosis, persistence of shocks to volatility, and first-order autocorrelation of squares is different in GARCH and ARSV models. This difference can explain why, when these models are fitted to the same series, the persistence estimated is usually higher in GARCH than in ARSV models, and, why gaussian ARSV models seem to be adequate, whereas GARCH models often require leptokurtic conditional distributions. We also show that introducing the asymmetric response of volatility to positive and negative returns does not change the conclusions. These results are illustrated with the analysis of daily financial returns. Copyright 2004, Oxford University Press.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Society for Financial Econometrics in its journal Journal of Financial Econometrics.

Volume (Year): 2 (2004)
Issue (Month): 2 ()
Pages: 319-342

in new window

Handle: RePEc:oup:jfinec:v:2:y:2004:i:2:p:319-342
Contact details of provider: Postal: Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK
Fax: 01865 267 985
Web page:

More information through EDIRC

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
  2. Harvey, Andrew & Streibel, Mariane, 1998. "Testing for a slowly changing level with special reference to stochastic volatility," Journal of Econometrics, Elsevier, vol. 87(1), pages 167-189, August.
  3. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, EconWPA.
  4. Sentana,E., 1995. "Quadratic Arch Models," Papers 9517, Centro de Estudios Monetarios Y Financieros-.
  5. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
  6. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  7. He, Changli & Teräsvirta, Timo, 1997. "Properties of Moments of a Family of GARCH Processes," SSE/EFI Working Paper Series in Economics and Finance 198, Stockholm School of Economics.
  8. Peter Hall & Qiwei Yao, 2003. "Inference in ARCH and GARCH models with heavy-tailed errors," LSE Research Online Documents on Economics 5875, London School of Economics and Political Science, LSE Library.
  9. Renate Meyer & Jun Yu, 2000. "BUGS for a Bayesian analysis of stochastic volatility models," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 198-215.
  10. Hentschel, Ludger & Campbell, John, 1992. "No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns," Scholarly Articles 3220232, Harvard University Department of Economics.
  11. Liesenfeld, Roman & Jung, Robert C., 1997. "Stochastic volatility models: Conditional normality versus heavy tailed distributions," Tübinger Diskussionsbeiträge 103, University of Tübingen, School of Business and Economics.
  12. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-89, October.
  13. Christian M. Hafner & Helmut Herwartz, 2000. "Testing for linear autoregressive dynamics under heteroskedasticity," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 177-197.
  14. Bai, Xuezheng & Russell, Jeffrey R. & Tiao, George C., 2003. "Kurtosis of GARCH and stochastic volatility models with non-normal innovations," Journal of Econometrics, Elsevier, vol. 114(2), pages 349-360, June.
  15. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  16. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
  17. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
  18. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
  19. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
  20. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
  21. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-34, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:2:y:2004:i:2:p:319-342. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.