IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article

Stylized facts of return series, robust estimates and three popular models of volatility

  • Timo Terasvirta
  • Zhenfang Zhao

Financial return series of sufficiently high frequency display stylized facts such as volatility clustering, high kurtosis, low starting and slow-decaying autocorrelation function of squared returns and the so-called Taylor effect. In order to evaluate the capacity of volatility models to reproduce these facts, we apply both standard and robust measures of kurtosis and autocorrelation of squares to first-order Generalized Autoregressive Conditional Heteroscedasticity (GARCH), Exponential GARCH (EGARCH) and Autoregressive Stochastic Volaticity (ARSV) models. Robust measures provide a fresh view of stylized facts, which is useful because many financial time series can be viewed as being contaminated with outliers.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.tandfonline.com/doi/abs/10.1080/09603107.2011.523195
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Applied Financial Economics.

Volume (Year): 21 (2011)
Issue (Month): 1-2 ()
Pages: 67-94

as
in new window

Handle: RePEc:taf:apfiec:v:21:y:2011:i:1-2:p:67-94
Contact details of provider: Web page: http://www.tandfonline.com/RAFE20

Order Information: Web: http://www.tandfonline.com/pricing/journal/RAFE20

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. repec:adr:anecst:y:1995:i:40:p:04 is not listed on IDEAS
  2. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, June.
  3. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-78, December.
  4. Cristina Amado & Timo Teräsvirta, 2011. "Modelling Volatility by Variance Decomposition," NIPE Working Papers 01/2011, NIPE - Universidade do Minho.
  5. Stefan Lundbergh & Timo Teräsvirta, 1999. "Evaluating GARCH Models," Tinbergen Institute Discussion Papers 99-008/4, Tinbergen Institute.
  6. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  7. Jonathan H. Wright & Tim Bollerslev, 1999. "High frequency data, frequency domain inference and volatility forecasting," International Finance Discussion Papers 649, Board of Governors of the Federal Reserve System (U.S.).
  8. Liesenfeld, Roman & Jung, Robert C., 1997. "Stochastic volatility models: Conditional normality versus heavy tailed distributions," Tübinger Diskussionsbeiträge 103, University of Tübingen, School of Business and Economics.
  9. Rydén, Tobias & Teräsvirta, Timo & Åsbrink, Stefan, 1996. "Stylized Facts of Daily Return Series and the Hidden Markov Model," SSE/EFI Working Paper Series in Economics and Finance 117, Stockholm School of Economics.
  10. Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing unconditional skewness in models for financial time series," CREATES Research Papers 2008-07, Department of Economics and Business Economics, Aarhus University.
  11. Richard T. Baillie & Claudio Morana, 2007. "Modeling Long Memory and Structural Breaks in Conditional Variances: an Adaptive FIGARCH Approach," ICER Working Papers - Applied Mathematics Series 11-2007, ICER - International Centre for Economic Research.
  12. He, Changli & Ter svirta, Timo & Malmsten, Hans, 2002. "Moment Structure Of A Family Of First-Order Exponential Garch Models," Econometric Theory, Cambridge University Press, vol. 18(04), pages 868-885, August.
  13. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  14. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
  15. Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155.
  16. Eklund, Bruno, 2005. "Estimating confidence regions over bounded domains," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 349-360, April.
  17. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  18. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
  19. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 319-342.
  20. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
  21. Van Bellegem, Sebastien & von Sachs, Rainer, 2004. "Forecasting economic time series with unconditional time-varying variance," International Journal of Forecasting, Elsevier, vol. 20(4), pages 611-627.
  22. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
  23. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:21:y:2011:i:1-2:p:67-94. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.