IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v21y2011i1-2p67-94.html
   My bibliography  Save this article

Stylized facts of return series, robust estimates and three popular models of volatility

Author

Listed:
  • Timo Terasvirta
  • Zhenfang Zhao

Abstract

Financial return series of sufficiently high frequency display stylized facts such as volatility clustering, high kurtosis, low starting and slow-decaying autocorrelation function of squared returns and the so-called Taylor effect. In order to evaluate the capacity of volatility models to reproduce these facts, we apply both standard and robust measures of kurtosis and autocorrelation of squares to first-order Generalized Autoregressive Conditional Heteroscedasticity (GARCH), Exponential GARCH (EGARCH) and Autoregressive Stochastic Volaticity (ARSV) models. Robust measures provide a fresh view of stylized facts, which is useful because many financial time series can be viewed as being contaminated with outliers.

Suggested Citation

  • Timo Terasvirta & Zhenfang Zhao, 2011. "Stylized facts of return series, robust estimates and three popular models of volatility," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 67-94.
  • Handle: RePEc:taf:apfiec:v:21:y:2011:i:1-2:p:67-94
    DOI: 10.1080/09603107.2011.523195
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/09603107.2011.523195
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. He, Changli & Ter svirta, Timo & Malmsten, Hans, 2002. "Moment Structure Of A Family Of First-Order Exponential Garch Models," Econometric Theory, Cambridge University Press, vol. 18(04), pages 868-885, August.
    2. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    5. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    6. M. Karanasos & J. Kim, 2003. "Moments of the ARMA--EGARCH model," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 146-166, June.
    7. Tobias Rydén & Timo Teräsvirta & Stefan Åsbrink, 1998. "Stylized facts of daily return series and the hidden Markov model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 217-244.
    8. Eklund, Bruno, 2005. "Estimating confidence regions over bounded domains," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 349-360, April.
    9. Baillie, Richard T. & Morana, Claudio, 2009. "Modelling long memory and structural breaks in conditional variances: An adaptive FIGARCH approach," Journal of Economic Dynamics and Control, Elsevier, vol. 33(8), pages 1577-1592, August.
    10. Tim Bollerslev & Jonathan H. Wright, 2001. "High-Frequency Data, Frequency Domain Inference, And Volatility Forecasting," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 596-602, November.
    11. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    12. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, May.
    13. repec:adr:anecst:y:1995:i:40:p:04 is not listed on IDEAS
    14. Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155.
    15. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    16. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    18. Changli He & Annastiina Silvennoinen & Timo Teräsvirta, 2008. "Parameterizing Unconditional Skewness in Models for Financial Time Series," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(2), pages 208-230, Spring.
    19. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    20. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    21. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    22. Lundbergh, Stefan & Terasvirta, Timo, 2002. "Evaluating GARCH models," Journal of Econometrics, Elsevier, vol. 110(2), pages 417-435, October.
    23. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    24. M. Angeles Carnero, 2004. "Persistence and Kurtosis in GARCH and Stochastic Volatility Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 319-342.
    25. Van Bellegem, Sebastien & von Sachs, Rainer, 2004. "Forecasting economic time series with unconditional time-varying variance," International Journal of Forecasting, Elsevier, vol. 20(4), pages 611-627.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanck, Christoph & Demetrescu, Matei & Kruse, Robinson, 2015. "Fixed-b Asymptotics for t-Statistics in the Presence of Time-Varying Volatility," Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112916, Verein für Socialpolitik / German Economic Association.
    2. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    3. Demetrescu, Matei & Kruse, Robinson, 2015. "Testing heteroskedastic time series for normality," Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113221, Verein für Socialpolitik / German Economic Association.
    4. Pascual, Lorenzo & Ruiz, Esther & Fresoli, Diego, 2011. "Bootstrap forecast of multivariate VAR models without using the backward representation," DES - Working Papers. Statistics and Econometrics. WS ws113426, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2014. "Testing for Leverage Effects in the Returns of US Equities," Documents de travail du Centre d'Economie de la Sorbonne 14022r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jan 2017.
    6. M. Angeles Carnero & Ana Pérez & Esther Ruiz, 2016. "Identification of asymmetric conditional heteroscedasticity in the presence of outliers," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(1), pages 179-201, March.
    7. Cristina Amado & Timo Teräsvirta, 2008. "Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure," NIPE Working Papers 03/2008, NIPE - Universidade do Minho.
    8. Matei Demetrescu & Christoph Hanck & Robinson Kruse, 2016. "Fixed-b Inference in the Presence of Time-Varying Volatility," CREATES Research Papers 2016-01, Department of Economics and Business Economics, Aarhus University.
    9. Dalla, Violetta, 2015. "Power transformations of absolute returns and long memory estimation," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 1-18.
    10. repec:hal:journl:halshs-00973922 is not listed on IDEAS
    11. Li, Qi & Lian, Heng & Zhu, Fukang, 2016. "Robust closed-form estimators for the integer-valued GARCH (1,1) model," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 209-225.
    12. Paulo M.M. Rodrigues & Matei Demetrescu, 2016. "Residual-augmented IVX predictive regression," Working Papers w201605, Banco de Portugal, Economics and Research Department.
    13. Laurie Davies & Walter Kraemer, 2016. "Stylized Facts and Simulating Long Range Financial Data," CESifo Working Paper Series 5796, CESifo Group Munich.
    14. M. Angeles Carnero Fernández & Ana Pérez Espartero, 2018. "Outliers and misleading leverage effect in asymmetric GARCH-type models," Working Papers. Serie AD 2018-01, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    15. Laurie Davies & Walter Kramer, 2016. "Stylized Facts and Simulating Long Range Financial Data," Papers 1612.05229, arXiv.org.
    16. Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2014. "Testing for Leverage Effect in Financial Returns," Documents de travail du Centre d'Economie de la Sorbonne 14022, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:21:y:2011:i:1-2:p:67-94. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.