IDEAS home Printed from https://ideas.repec.org/p/mse/cesdoc/14022.html
   My bibliography  Save this paper

Testing for Leverage Effect in Financial Returns

Author

Abstract

This article questions the empirical usefulness of leverage effects to describe the dynamics of equity returns. Using a recursive estimation scheme that accurately disentangles the asymmetry coming from the conditional distribution of returns and the asymmetry that is related to the past return to volatility component in GARCH models, we test for the statistical significance of the latter. Relying on both in and out of sample tests we consistently find a weak contribution of leverage effect over the past 25 years of S&P 500 returns, casting light on the importance of the conditional distribution in time series models

Suggested Citation

  • Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2014. "Testing for Leverage Effect in Financial Returns," Documents de travail du Centre d'Economie de la Sorbonne 14022, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
  • Handle: RePEc:mse:cesdoc:14022
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    2. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2009. "Martingalized historical approach for option pricing," Documents de travail du Centre d'Economie de la Sorbonne 09021, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    3. Kon, Stanley J, 1984. "Models of Stock Returns-A Comparison," Journal of Finance, American Finance Association, vol. 39(1), pages 147-165, March.
    4. Vedat Akgiray & G. Geoffrey Booth, 1987. "Compound Distribution Models Of Stock Returns: An Empirical Comparison," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 10(3), pages 269-280, September.
    5. Hansen, Bruce E, 1992. "The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 61-82, Suppl. De.
    6. Christophe Chorro & Dominique Gu�gan & Florian Ielpo, 2012. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1079-1094, April.
    7. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    9. Wu, Guojun, 2001. "The Determinants of Asymmetric Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 14(3), pages 837-859.
    10. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
    11. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    12. Maheu, John M. & McCurdy, Thomas H., 2011. "Do high-frequency measures of volatility improve forecasts of return distributions?," Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
    13. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    14. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    15. Chorro, C. & Guégan, D. & Ielpo, F., 2010. "Martingalized historical approach for option pricing," Finance Research Letters, Elsevier, vol. 7(1), pages 24-28, March.
    16. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    17. Bandi, Federico M. & Renò, Roberto, 2012. "Time-varying leverage effects," Journal of Econometrics, Elsevier, vol. 169(1), pages 94-113.
    18. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    19. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
    20. Olivier Wintenberger, 2013. "Continuous Invertibility and Stable QML Estimation of the EGARCH(1,1) Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 846-867, December.
    21. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    22. Meitz, Mika & Saikkonen, Pentti, 2011. "Parameter Estimation In Nonlinear Ar–Garch Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1236-1278, December.
    23. Amisano, Gianni & Giacomini, Raffaella, 2007. "Comparing Density Forecasts via Weighted Likelihood Ratio Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 177-190, April.
    24. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    25. José Curto & José Pinto & Gonçalo Tavares, 2009. "Modeling stock markets’ volatility using GARCH models with Normal, Student’s t and stable Paretian distributions," Statistical Papers, Springer, vol. 50(2), pages 311-321, March.
    26. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    27. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    28. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    29. Bai, Xuezheng & Russell, Jeffrey R. & Tiao, George C., 2003. "Kurtosis of GARCH and stochastic volatility models with non-normal innovations," Journal of Econometrics, Elsevier, vol. 114(2), pages 349-360, June.
    30. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    31. Francq, Christian & Wintenberger, Olivier & Zakoïan, Jean-Michel, 2013. "GARCH models without positivity constraints: Exponential or log GARCH?," Journal of Econometrics, Elsevier, vol. 177(1), pages 34-46.
    32. Teräsvirta, Timo & Zhao, Zhenfang, 2007. "Stylized Facts of Return Series, Robust Estimates, and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 662, Stockholm School of Economics, revised 01 Aug 2007.
    33. A. Cevdet Aydemir & Michael Gallmeyer & Burton Hollifield, 2006. "Financial Leverage Does Not Cause the Leverage Effect," 2006 Meeting Papers 263, Society for Economic Dynamics.
    34. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    35. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    36. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Martingalized Historical approach for Option Pricing," Post-Print halshs-00437927, HAL.
    37. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    38. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    39. Duffee, Gregory R., 1995. "Stock returns and volatility A firm-level analysis," Journal of Financial Economics, Elsevier, vol. 37(3), pages 399-420, March.
    40. Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2013. "Option pricing with discrete time jump processes," Post-Print hal-00964950, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petrică Andreea-Cristina & Stancu Stelian, 2017. "The determinants of exchange rates and the movements of EUR/RON exchange rate via non-linear stochastic processes," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 11(1), pages 937-948, July.
    2. Chevallier, Julien & Ielpo, Florian, 2017. "Investigating the leverage effect in commodity markets with a recursive estimation approach," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 763-778.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chorro, Christophe & Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2018. "Testing for leverage effects in the returns of US equities," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 290-306.
    2. Christophe Chorro & Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2017. "Testing for Leverage Effects in the Returns of US Equities," Post-Print halshs-00973922, HAL.
    3. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Likelihood-Related Estimation Methods and Non-Gaussian GARCH Processes," Post-Print halshs-00523371, HAL.
    4. Guégan, Dominique & Ielpo, Florian & Lalaharison, Hanjarivo, 2013. "Option pricing with discrete time jump processes," Journal of Economic Dynamics and Control, Elsevier, vol. 37(12), pages 2417-2445.
    5. Bucevska Vesna, 2013. "An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange," Business Systems Research, Sciendo, vol. 4(1), pages 49-64, March.
    6. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    7. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
    8. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
    9. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2010. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Post-Print halshs-00469529, HAL.
    10. Dominique Guegan & Florian Ielpo & Hanjarivo Lalaharison, 2012. "Option pricing with discrete time jump processes," Post-Print halshs-00611706, HAL.
    11. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    13. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2012. "Option Pricing for GARCH-type Models with Generalized Hyperbolic Innovations," Post-Print hal-00511965, HAL.
    14. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2012. "Option Pricing for GARCH-type Models with Generalized Hyperbolic Innovations," PSE-Ecole d'économie de Paris (Postprint) hal-00511965, HAL.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    16. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    17. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    18. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
    19. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    20. Bollerslev, Tim & Zhou, Hao, 2006. "Volatility puzzles: a simple framework for gauging return-volatility regressions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 123-150.

    More about this item

    Keywords

    Maximum likelihood method; related-GARCH process; recursive estimation method; mixture of Gaussian distributions; generalized hyperbolic distributions; S&P 500; forecast; leverage effect;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:14022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lucie Label (email available below). General contact details of provider: https://edirc.repec.org/data/cenp1fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.