IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/28-13.html
   My bibliography  Save this paper

A nonparametric test of a strong leverage hypothesis

Author

Listed:
  • Oliver Linton
  • Yoon-Jae Whang
  • Yu-Min Yen

Abstract

The so-called leverage hypothesis is that negative shocks to prices/ returns affect volatility more than equal positive shocks. Whether this is attributable to changing financial leverage is still subject to dispute but the terminology is in wide use. There are many tests of the leverage hypothesis using discrete time data. These typically involve the fitting of a general parametric or semiparametric model to conditional volatility and then testing the implied restrictions on parameters or curves. We propose an alternative way of testing this hypothesis using realised volatility as an alternative direct nonparametric measure. Our null hypothesis is of conditional distributional dominance and so is much stronger than the usual hypotheses considered previously. We implement our test on a number of stock return datasets using intraday data over a long span. We find powerful evidence in favour or our hypothesis.

Suggested Citation

  • Oliver Linton & Yoon-Jae Whang & Yu-Min Yen, 2013. "A nonparametric test of a strong leverage hypothesis," CeMMAP working papers 28/13, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:28/13
    DOI: 10.1920/wp.cem.2013.2813
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP2813.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2013.2813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    2. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    3. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    4. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    5. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    6. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    7. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    8. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    9. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    10. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    11. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    12. María José Rodríguez & Esther Ruiz, 2012. "Revisiting Several Popular GARCH Models with Leverage Effect: Differences and Similarities," Journal of Financial Econometrics, Oxford University Press, vol. 10(4), pages 637-668, September.
    13. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    14. O. Linton & E. Mammen, 2005. "Estimating Semiparametric ARCH(∞) Models by Kernel Smoothing Methods," Econometrica, Econometric Society, vol. 73(3), pages 771-836, May.
    15. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    16. Ole E. Barndorff‐Nielsen & Neil Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280, May.
    17. Aït-Sahalia, Yacine & Fan, Jianqing & Li, Yingying, 2013. "The leverage effect puzzle: Disentangling sources of bias at high frequency," Journal of Financial Economics, Elsevier, vol. 109(1), pages 224-249.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    19. Fulvio Corsi & Roberto Renò, 2012. "Discrete-Time Volatility Forecasting With Persistent Leverage Effect and the Link With Continuous-Time Volatility Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 368-380, January.
    20. Corradi, Valentina & Distaso, Walter & Fernandes, Marcelo, 2012. "International market links and volatility transmission," Journal of Econometrics, Elsevier, vol. 170(1), pages 117-141.
    21. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    22. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linton, Oliver & Whang, Yoon-Jae & Yen, Yu-Min, 2016. "A nonparametric test of a strong leverage hypothesis," Journal of Econometrics, Elsevier, vol. 194(1), pages 153-186.
    2. Oliver Linton & Yoon-Jae Whang & Yu-Min Yen, 2012. "A nonparametric test of the leverage hypothesis," CeMMAP working papers CWP24/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Oliver Linton & Yoon-Jae Whang & Yu-Min Yen, 2012. "A nonparametric test of the leverage hypothesis," CeMMAP working papers 24/12, Institute for Fiscal Studies.
    4. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    5. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    6. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    7. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    8. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    9. Omar Euch & Masaaki Fukasawa & Mathieu Rosenbaum, 2018. "The microstructural foundations of leverage effect and rough volatility," Finance and Stochastics, Springer, vol. 22(2), pages 241-280, April.
    10. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Francesco Audrino & Yujia Hu, 2016. "Volatility Forecasting: Downside Risk, Jumps and Leverage Effect," Econometrics, MDPI, vol. 4(1), pages 1-24, February.
    12. Muhammad Surajo Sanusi, 2017. "Investigating the sources of Black’s leverage effect in oil and gas stocks," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1318812-131, January.
    13. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    14. Jin, Xiaoye, 2017. "Time-varying return-volatility relation in international stock markets," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 157-173.
    15. Aboura, Sofiane & Chevallier, Julien, 2018. "Tail risk and the return-volatility relation," Research in International Business and Finance, Elsevier, vol. 46(C), pages 16-29.
    16. El Euch Omar & Fukasawa Masaaki & Rosenbaum Mathieu, 2016. "The microstructural foundations of leverage effect and rough volatility," Papers 1609.05177, arXiv.org.
    17. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    18. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    19. Amélie Charles & Olivier Darné, 2019. "The accuracy of asymmetric GARCH model estimation," International Economics, CEPII research center, issue 157, pages 179-202.
    20. Amira, Khaled & Taamouti, Abderrahim & Tsafack, Georges, 2011. "What drives international equity correlations? Volatility or market direction?," Journal of International Money and Finance, Elsevier, vol. 30(6), pages 1234-1263, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:28/13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.