IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Measuring causality between volatility and returns with high-frequency data

  • Jean-Marie Dufour


  • René García


  • Abderrahim Taamouti


We use high-frequency data to study the dynamic relationship between volatility and equity returns. We provide evidence on two alternative mechanisms of interaction between returns and volatilities: the leverage effect and the volatility feedback effect. The leverage hypothesis asserts that return shocks lead to changes in conditional volatility, while the volatility feedback effect theory assumes that return shocks can be caused by changes in conditional volatility through a time-varying risk premium. On observing that a central difference between these alternative explanations lies in the direction of causality, we consider vector autoregressive models of returns and realized volatility and we measure these effects along with the time lags involved through short-run and long-run causality measures proposed in Dufour and Taamouti (2008), as opposed to simple correlations. We analyze 5-minute observations on S&P 500 Index futures contracts, the associated realized volatilities (before and after filtering jumps through the bispectrum) and implied volatilities. Using only returns and realized volatility, we find a weak dynamic leverage effect for the first four hours at the hourly frequency and a strong dynamic leverage effect for the first three days at the daily frequency. The volatility feedback effect appears to be negligible at all horizons. By contrast, when implied volatility is considered, a volatility feedback becomes apparent, whereas the leverage effect is almost the same. We interpret these results as evidence that implied volatility contains important information on future volatility, through its nonlinear relation with option prices which are themselves forwardlooking. In addition, we study the dynamic impact of news on returns and volatility, again through causality measures. First, to detect possible dynamic asymmetry, we separate good from bad return news and find a much stronger impact of bad return news (as opposed to good return news) on volatility. Second, we introduce a concept of news based on the difference between implied and realized volatilities (the variance risk premium) and we find that a positive variance risk premium (an anticipated increase in variance) has more impact on returns than a negative variance risk premium.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Universidad Carlos III, Departamento de Economía in its series Economics Working Papers with number we084422.

in new window

Date of creation: Sep 2008
Date of revision:
Handle: RePEc:cte:werepe:we084422
Contact details of provider: Postal: C./ Madrid, 126, 28903 Getafe (Madrid)
Phone: +34-91 6249594
Fax: +34-91 6249329
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2002. "Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange?," Center for Financial Institutions Working Papers 02-23, Wharton School Center for Financial Institutions, University of Pennsylvania.
  2. Douglas K. Pearce & V. Vance Roley, 1984. "Stock Prices and Economic News," NBER Working Papers 1296, National Bureau of Economic Research, Inc.
  3. Tim Bollerslev & Julia Litvinova & George Tauchen, 2006. "Leverage and Volatility Feedback Effects in High-Frequency Data," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 353-384.
  4. Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
  5. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
  6. G. William Schwert, 1988. "Why Does Stock Market Volatility Change Over Time?," NBER Working Papers 2798, National Bureau of Economic Research, Inc.
  7. Thomas Busch & Bent Jesper Christensen & Morten Ørregaard Nielsen, 2008. "The Role of Implied Volatility in Forecasting Future Realized Volatility and Jumps in Foreign Exchange, Stock, and Bond Markets," Working Papers 1181, Queen's University, Department of Economics.
  8. Balduzzi, Pierluigi & Elton, Edwin J. & Green, T. Clifton, 2001. "Economic News and Bond Prices: Evidence from the U.S. Treasury Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(04), pages 523-543, December.
  9. McQueen, Grant & Roley, V Vance, 1993. "Stock Prices, News, and Business Conditions," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 683-707.
  10. David M. Cutler & James M. Poterba & Lawrence H. Summers, 1988. "What Moves Stock Prices?," NBER Working Papers 2538, National Bureau of Economic Research, Inc.
  11. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  12. Robert S. Pindyck, 1983. "Risk, Inflation, and the Stock Market," NBER Working Papers 1186, National Bureau of Economic Research, Inc.
  13. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
  14. Ole E. Barndorff-Nielsen & Neil Shephard, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Papers 2003-W17, Economics Group, Nuffield College, University of Oxford.
  15. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-73, April.
  16. Jacquier, Eric & Polson, Nicholas G. & Rossi, P.E.Peter E., 2004. "Bayesian analysis of stochastic volatility models with fat-tails and correlated errors," Journal of Econometrics, Elsevier, vol. 122(1), pages 185-212, September.
  17. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
  18. Hui Guo & Robert Savickas, 2005. "Idiosyncratic volatility, stock market volatility, and expected stock returns," Working Papers 2003-028, Federal Reserve Bank of St. Louis.
  19. Tim Bollerslev & Hao Zhou, 2007. "Expected Stock Returns and Variance Risk Premia," CREATES Research Papers 2007-17, School of Economics and Management, University of Aarhus.
  20. Ole BARNDORFF-NIELSEN & Svend Erik GRAVERSEN & Jean JACOD & Mark PODOLSKIJ & Neil SHEPHARD, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," OFRC Working Papers Series 2004fe21, Oxford Financial Research Centre.
  21. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
  22. Andersen, Torben G. & Bollerslev, Tim & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies (CFS).
  23. Schwert, G William, 1981. "The Adjustment of Stock Prices to Information about Inflation," Journal of Finance, American Finance Association, vol. 36(1), pages 15-29, March.
  24. Turner, C.M. & Startz, R. & Nelson, C.R., 1989. "The Markov Model Of Heteroskedasticity, Risk And Learning In The Stock Market," Working Papers 89-01, University of Washington, Department of Economics.
  25. Haugen, Robert A & Talmor, Eli & Torous, Walter N, 1991. " The Effect of Volatility Changes on the Level of Stock Prices and Subsequent Expected Returns," Journal of Finance, American Finance Association, vol. 46(3), pages 985-1007, July.
  26. Christopher M. Turner & Richard Startz & Charles R. Nelson, 1989. "A Markov Model of Heteroskedasticity, Risk, and Learning in the Stock Market," NBER Working Papers 2818, National Bureau of Economic Research, Inc.
  27. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  28. Whitelaw, Robert F, 1994. " Time Variations and Covariations in the Expectation and Volatility of Stock Market Returns," Journal of Finance, American Finance Association, vol. 49(2), pages 515-41, June.
  29. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
  30. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
  31. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  32. Adrian R. Pagan & G. William Schwert, 1989. "Alternative Models For Conditional Stock Volatility," NBER Working Papers 2955, National Bureau of Economic Research, Inc.
  33. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-81.
  34. Meddahi, N., 2001. "A Theoretical Comparison Between Integrated and Realized Volatilies," Cahiers de recherche 2001-26, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  35. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
  36. repec:cep:stiecm:/2003/453 is not listed on IDEAS
  37. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 456-499.
  38. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  39. Hardouvelis, Gikas A., 1987. "Macroeconomic information and stock prices," Journal of Economics and Business, Elsevier, vol. 39(2), pages 131-140, May.
  40. Jain, Prem C, 1988. "Response of Hourly Stock Prices and Trading Volume to Economic News," The Journal of Business, University of Chicago Press, vol. 61(2), pages 219-31, April.
  41. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-38, July.
  42. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  43. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
  44. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
  45. Brandt, Michael W. & Kang, Qiang, 2004. "On the relationship between the conditional mean and volatility of stock returns: A latent VAR approach," Journal of Financial Economics, Elsevier, vol. 72(2), pages 217-257, May.
  46. Sydney C. Ludvigson & Serena Ng, 2005. "The Empirical Risk-Return Relation: A Factor Analysis Approach," NBER Working Papers 11477, National Bureau of Economic Research, Inc.
  47. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cte:werepe:we084422. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.