IDEAS home Printed from https://ideas.repec.org/a/eee/finmar/v13y2010i2p225-248.html
   My bibliography  Save this article

How asymmetric is U.S. stock market volatility?

Author

Listed:
  • Ederington, Louis H.
  • Guan, Wei

Abstract

This paper explores differences in the impact of equally large positive and negative surprise return shocks in the aggregate U.S. stock market on: (1) the volatility predictions of asymmetric time-series models, (2) implied volatility, and (3) realized volatility. Following large negative surprise return shocks, both asymmetric time-series models (such as the EGARCH and GJR models) and implied volatility predict an increase in volatility and, consistent with this, ex post realized volatility normally rises as predicted. Following large positive return shocks, asymmetric time-series models predict an increase in volatility (albeit a much smaller increase than following a negative shock of the same magnitude), but both implied and realized volatilities generally fall sharply. While asymmetric time-series models predict a decline in volatility following near-zero returns, both implied and realized volatility are normally little changed from levels observed prior to the stable market. The reasons for the differences are explored.

Suggested Citation

  • Ederington, Louis H. & Guan, Wei, 2010. "How asymmetric is U.S. stock market volatility?," Journal of Financial Markets, Elsevier, vol. 13(2), pages 225-248, May.
  • Handle: RePEc:eee:finmar:v:13:y:2010:i:2:p:225-248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1386-4181(09)00061-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    3. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    4. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    5. Dennis, Patrick & Mayhew, Stewart & Stivers, Chris, 2006. "Stock Returns, Implied Volatility Innovations, and the Asymmetric Volatility Phenomenon," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(2), pages 381-406, June.
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    8. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    9. Doron Avramov & Tarun Chordia & Amit Goyal, 2006. "The Impact of Trades on Daily Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1241-1277.
    10. Ederington, Louis H. & Guan, Wei, 2010. "Longer-Term Time-Series Volatility Forecasts," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(4), pages 1055-1076, August.
    11. Kane, Alex & Lehmann, Bruce N. & Trippi, Robert R., 2000. "Regularities in volatility and the price of risk following large stock market movements in the US and Japan," Journal of International Money and Finance, Elsevier, vol. 19(1), pages 1-32, February.
    12. Wu, Guojun & Xiao, Zhijie, 2002. "A generalized partially linear model of asymmetric volatility," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 287-319, August.
    13. Allen M. Poteshman, 2001. "Underreaction, Overreaction, and Increasing Misreaction to Information in the Options Market," Journal of Finance, American Finance Association, vol. 56(3), pages 851-876, June.
    14. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    15. Wu, Guojun, 2001. "The Determinants of Asymmetric Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 14(3), pages 837-859.
    16. Tim Bollerslev & Julia Litvinova & George Tauchen, 2006. "Leverage and Volatility Feedback Effects in High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 353-384.
    17. Cheekiat Low, 2004. "The Fear and Exuberance from Implied Volatility of S&P 100 Index Options," The Journal of Business, University of Chicago Press, vol. 77(3), pages 527-546, July.
    18. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    19. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    20. Bollerslev, Tim & Zhou, Hao, 2006. "Volatility puzzles: a simple framework for gauging return-volatility regressions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 123-150.
    21. Massimiliano Caporin & Michael McAleer, 2006. "Dynamic Asymmetric GARCH," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 385-412.
    22. Li, Qi & Yang, Jian & Hsiao, Cheng & Chang, Young-Jae, 2005. "The relationship between stock returns and volatility in international stock markets," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 650-665, December.
    23. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    24. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    25. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    26. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    27. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bollerslev, Tim & Zhou, Hao, 2006. "Volatility puzzles: a simple framework for gauging return-volatility regressions," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 123-150.
    2. Tim Bollerslev & Hao Zhou, 2003. "Volatility puzzles: a unified framework for gauging return-volatility regressions," Finance and Economics Discussion Series 2003-40, Board of Governors of the Federal Reserve System (U.S.).
    3. Chaiyuth Padungsaksawasdi & Robert T. Daigler, 2014. "The Return‐Implied Volatility Relation for Commodity ETFs," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(3), pages 261-281, March.
    4. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    5. Prasenjit Chakrabarti & K. Kiran Kumar, 2017. "Does behavioural theory explain return-implied volatility relationship? Evidence from India," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1355521-135, January.
    6. Jin, Xiaoye, 2017. "Time-varying return-volatility relation in international stock markets," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 157-173.
    7. Yiguo Sun & Ximing Wu, 2018. "Leverage and Volatility Feedback Effects and Conditional Dependence Index: A Nonparametric Study," JRFM, MDPI, vol. 11(2), pages 1-20, June.
    8. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    9. Zhou, Jian, 2016. "A high-frequency analysis of the interactions between REIT return and volatility," Economic Modelling, Elsevier, vol. 56(C), pages 102-108.
    10. Karim, Muhammad Mahmudul & Kawsar, Najmul Haque & Ariff, Mohamed & Masih, Mansur, 2022. "Does implied volatility (or fear index) affect Islamic stock returns and conventional stock returns differently? Wavelet-based granger-causality, asymmetric quantile regression and NARDL approaches," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    11. Horpestad, Jone B. & Lyócsa, Štefan & Molnár, Peter & Olsen, Torbjørn B., 2019. "Asymmetric volatility in equity markets around the world," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 540-554.
    12. Ederington, Louis H. & Guan, Wei, 2013. "The cross-sectional relation between conditional heteroskedasticity, the implied volatility smile, and the variance risk premium," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3388-3400.
    13. Philippe Masset & Martin Wallmeier, 2010. "A High†Frequency Investigation of the Interaction between Volatility and DAX Returns," European Financial Management, European Financial Management Association, vol. 16(3), pages 327-344, June.
    14. Chelikani, Surya & Marks, Joseph M. & Nam, Kiseok, 2023. "Volatility feedback effect and risk-return tradeoff," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 49-65.
    15. Hibbert, Ann Marie & Daigler, Robert T. & Dupoyet, Brice, 2008. "A behavioral explanation for the negative asymmetric return-volatility relation," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2254-2266, October.
    16. Vo, Minh & Cohen, Michael & Boulter, Terry, 2015. "Asymmetric risk and return: Evidence from the Australian Stock Exchange," Pacific-Basin Finance Journal, Elsevier, vol. 35(PB), pages 558-573.
    17. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    18. Corbet, Shaen & Dunne, John James & Larkin, Charles, 2019. "Quantitative easing announcements and high-frequency stock market volatility: Evidence from the United States," Research in International Business and Finance, Elsevier, vol. 48(C), pages 321-334.
    19. Bucevska Vesna, 2013. "An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange," Business Systems Research, Sciendo, vol. 4(1), pages 49-64, March.
    20. Huang, Teng-Ching & Wu, Ching-Chih & Lin, Bing-Huei, 2016. "Institutional herding and risk–return relationship," Journal of Business Research, Elsevier, vol. 69(6), pages 2073-2080.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finmar:v:13:y:2010:i:2:p:225-248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/finmar .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.