IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange

  • Vesna Bucevska

    (Faculty of Economics, University “Ss. Cyril and Methodius”, Skopje, Republic of Macedonia)

Registered author(s):

    Background: In light of the latest global financial crisis and the ongoing sovereign debt crisis, accurate measuring of market losses has become a very current issue. One of the most popular risk measures is Value-at-Risk (VaR). Objectives: Our paper has two main purposes. The first is to test the relative performance of selected GARCH-type models in terms of their ability of delivering volatility estimates. The second one is to contribute to extend the very scarce empirical research on VaR estimation in emerging financial markets. Methods/Approach: Using the daily returns of the Macedonian stock exchange index-MBI 10, we have tested the performance of the symmetric GARCH (1,1) and the GARCH-M model as well as of the asymmetric EGARCH (1,1) model, the GARCH-GJR model and the APARCH (1,1) model with different residual distributions. Results: The most adequate GARCH family models for estimating volatility in the Macedonian stock market are the asymmetric EGARCH model with Student’s t-distribution, the EGARCH model with normal distribution and the GARCH-GJR model. Conclusion: The econometric estimation of VaR is related to the chosen GARCH model. The obtained findings bear important implications regarding VaR estimation in turbulent times that have to be addressed by investors in emerging capital markets.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Article are free online, and can be used only for education and reserach.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Society for Promotion of Business Information Technology (BIT) in its journal Business Systems Research.

    Volume (Year): 4 (2013)
    Issue (Month): 1 ()
    Pages: 49-64

    in new window

    Handle: RePEc:bit:bsrysr:v:4:y:2013:i:1:p:49-64
    Contact details of provider:

    Order Information: Postal: Udruga BIT, Faculty of Economics and Business, Trg J. F. Kennedy 6, 10000 Zagreb, Croatia.

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-78, December.
    2. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    3. Braun, Phillip A & Nelson, Daniel B & Sunier, Alain M, 1995. " Good News, Bad News, Volatility, and Betas," Journal of Finance, American Finance Association, vol. 50(5), pages 1575-1603, December.
    4. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    6. Bekaert, Geert & Harvey, Campbell R, 1995. " Time-Varying World Market Integration," Journal of Finance, American Finance Association, vol. 50(2), pages 403-44, June.
    7. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    8. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    9. Dubravka Benakovic & Petra Posedel, 2010. "Do macroeconomic factors matter for stock returns? Evidence from estimating a multifactor model on the Croatian market," Business Systems Research, Society for Promotion of Business Information Technology (BIT), vol. 1(1-2), pages 39-46.
    10. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
    11. G. William Schwert, 1989. "Stock Volatility and the Crash of '87," NBER Working Papers 2954, National Bureau of Economic Research, Inc.
    12. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
    13. Brooks, C. & Clare, A. D. & Persand, G., 2000. "A word of caution on calculating market-based minimum capital risk requirements," Journal of Banking & Finance, Elsevier, vol. 24(10), pages 1557-1574, October.
    14. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    15. Bae, Kee-Hong & Andrew Karolyi, G., 1995. "Good news, band news and international spilovers of stock return volatility between Japan and the U.S," Pacific-Basin Finance Journal, Elsevier, vol. 3(1), pages 144-144, May.
    16. Cheung, Yin-Wong & Ng, Lilian K, 1992. " Stock Price Dynamics and Firm Size: An Empirical Investigation," Journal of Finance, American Finance Association, vol. 47(5), pages 1985-97, December.
    17. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    18. Ng, Angela, 2000. "Volatility spillover effects from Japan and the US to the Pacific-Basin," Journal of International Money and Finance, Elsevier, vol. 19(2), pages 207-233, April.
    19. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    20. Timotheos Angelidis & Stavros Degiannakis, 2005. "Modeling risk for long and short trading positions," Journal of Risk Finance, Emerald Group Publishing, vol. 6(3), pages 226-238, May.
    21. DAVID G. McMILLAN & ALAN E. H. SPEIGHT, 2007. "Value-at-Risk in Emerging Equity Markets: Comparative Evidence for Symmetric, Asymmetric, and Long-Memory GARCH Models," International Review of Finance, International Review of Finance Ltd., vol. 7(1-2), pages 1-19.
    22. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    23. Sasa Zikovic & Bora Aktan, 2009. "Global financial crisis and VaR performance in emerging markets: A case of EU candidate states - Turkey and Croatia," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics, vol. 27(1), pages 149-170.
    24. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    25. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    26. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    27. Duffee, Gregory R., 1995. "Stock returns and volatility A firm-level analysis," Journal of Financial Economics, Elsevier, vol. 37(3), pages 399-420, March.
    28. John Y. Campbell & Ludger Hentschel, 1991. "No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns," NBER Working Papers 3742, National Bureau of Economic Research, Inc.
    29. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665 National Bureau of Economic Research, Inc.
    30. Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394.
    31. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
    32. Vilasuso, Jon, 2002. "Forecasting exchange rate volatility," Economics Letters, Elsevier, vol. 76(1), pages 59-64, June.
    33. José Curto & José Pinto & Gonçalo Tavares, 2009. "Modeling stock markets’ volatility using GARCH models with Normal, Student’s t and stable Paretian distributions," Statistical Papers, Springer, vol. 50(2), pages 311-321, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:bit:bsrysr:v:4:y:2013:i:1:p:49-64. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirjana Pejić Bach)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.