IDEAS home Printed from https://ideas.repec.org/a/eme/jrfpps/15265940510599838.html

Modeling risk for long and short trading positions

Author

Listed:
  • Timotheos Angelidis
  • Stavros Degiannakis

Abstract

Purpose - Aims to investigate the accuracy of parametric, nonparametric, and semiparametric methods in predicting the one‐day‐ahead value‐at‐risk (VaR) measure in three types of markets (stock exchanges, commodities, and exchange rates), both for long and short trading positions. Design/methodology/approach - The risk management techniques are designed to capture the main characteristics of asset returns, such as leptokurtosis and asymmetric distribution, volatility clustering, asymmetric relationship between stock returns and conditional variance, and power transformation of conditional variance. Findings - Based on back‐testing measures and a loss function evaluation method, finds that the modeling of the main characteristics of asset returns produces the most accurate VaR forecasts. Especially for the high confidence levels, a risk manager must employ different volatility techniques in order to forecast accurately the VaR for the two trading positions. Practical implications - Different models achieve accurate VaR forecasts for long and short trading positions, indicating to portfolio managers the significance of modeling separately the left and the right side of the distribution of returns. Originality/value - The behavior of the risk management techniques is examined for both long and short VaR trading positions; to the best of one's knowledge, this is the first study that investigates the risk characteristics of three different financial markets simultaneously. Moreover, a two‐stage model selection is implemented in contrast with the most commonly used back‐testing procedures to identify a unique model. Finally, parametric, nonparametric, and semiparametric techniques are employed to investigate their performance in a unified environment.

Suggested Citation

  • Timotheos Angelidis & Stavros Degiannakis, 2005. "Modeling risk for long and short trading positions," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 6(3), pages 226-238, July.
  • Handle: RePEc:eme:jrfpps:15265940510599838
    DOI: 10.1108/15265940510599838
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/15265940510599838/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/15265940510599838/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/15265940510599838?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pradhan, Ashis Kumar & Tiwari, Aviral Kumar, 2021. "Estimating the market risk of clean energy technologies companies using the expected shortfall approach," Renewable Energy, Elsevier, vol. 177(C), pages 95-100.
    2. Timotheos Angelidis & Stavros Degiannakis, . "Backtesting VaR models:a two-stage procedure," Journal of Risk Model Validation, Journal of Risk Model Validation.
    3. Bucevska Vesna, 2013. "An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange," Business Systems Research, Sciendo, vol. 4(1), pages 49-64, March.
    4. Degiannakis, Stavros & Potamia, Artemis, 2017. "Multiple-days-ahead value-at-risk and expected shortfall forecasting for stock indices, commodities and exchange rates: Inter-day versus intra-day data," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 176-190.
    5. Maghyereh Aktham Issa & Awartani Basel, 2012. "Modeling and Forecasting Value-at-Risk in the UAE Stock Markets: The Role of Long Memory, Fat Tails and Asymmetries in Return Innovations," Review of Middle East Economics and Finance, De Gruyter, vol. 8(1), pages 1-22, August.
    6. Manuel Landajo & Javier De Andrés & Pedro Lorca, 2008. "Measuring firm performance by using linear and non‐parametric quantile regressions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(2), pages 227-250, April.
    7. Malin Song & Zixu Sui & Xin Zhao, 2023. "A risk measurement study evaluating the impact of COVID-19 on China's financial market using the QR-SGED-EGARCH model," Annals of Operations Research, Springer, vol. 330(1), pages 787-806, November.
    8. Degiannakis, Stavros & Floros, Christos & Livada, Alexandra, 2012. "Evaluating Value-at-Risk Models before and after the Financial Crisis of 2008: International Evidence," MPRA Paper 80463, University Library of Munich, Germany.
    9. Timotheos Angelidis & Stavros Degiannakis, 2007. "Backtesting VaR Models: An Expected Shortfall Approach," Working Papers 0701, University of Crete, Department of Economics.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jrfpps:15265940510599838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.