IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Backtesting VaR Models: An Expected Shortfall Approach

  • Timotheos Angelidis

    ()

  • Stavros Degiannakis

Academics and practitioners have extensively studied Value-at-Risk (VaR) to propose a unique risk management technique that generates accurate VaR estimations for long and short trading positions and for all types of financial assets. However, they have not succeeded yet as the testing frameworks of the proposals developed, have not been widely accepted. A two-stage backtesting procedure is proposed to select a model that not only forecasts VaR but also predicts the losses beyond VaR. Numerous conditional volatility models that capture the main characteristics of asset returns (asymmetric and leptokurtic unconditional distribution of returns, power transformation and fractional integration of the conditional variance) under four distributional assumptions (normal, GED, Student-t, and skewed Student-t) have been estimated to find the best model for three financial markets, long and short trading positions, and two confidence levels. By following this procedure, the risk manager can significantly reduce the number of competing models that accurately predict both the VaR and the Expected Shortfall (ES) measures.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://economics.soc.uoc.gr/wpa/docs/Backtesting_VaR_Models.pdf
File Function: First version
Download Restriction: no

Paper provided by University of Crete, Department of Economics in its series Working Papers with number 0701.

as
in new window

Length: 31 pages
Date of creation: 12 Jan 2007
Date of revision:
Handle: RePEc:crt:wpaper:0701
Contact details of provider: Postal: Gallos - Rethymno 74100
Phone: +30 831 77405
Fax: +30 831 77406
Web page: http://economics.soc.uoc.gr/
More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
  2. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  3. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2010. "The Use of GARCH Models in VaR Estimation," Working Papers 0048, University of Peloponnese, Department of Economics.
  4. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
  5. Suleyman Basak & Alex Shapiro, . "Value-at-Risk Based Risk Management: Optimal Policies and Asset Prices," Rodney L. White Center for Financial Research Working Papers 6-99, Wharton School Rodney L. White Center for Financial Research.
  6. Carlo Acerbi & Claudio Nordio & Carlo Sirtori, 2001. "Expected Shortfall as a Tool for Financial Risk Management," Papers cond-mat/0102304, arXiv.org.
  7. So, Mike K.P. & Yu, Philip L.H., 2006. "Empirical analysis of GARCH models in value at risk estimation," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 16(2), pages 180-197, April.
  8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  10. Jose Lopez, 1998. "Methods for evaluating value-at-risk estimates," Research Paper 9802, Federal Reserve Bank of New York.
  11. GIOT, Pierre & LAURENT, Sébastien, . "Value-at-Risk for long and short trading positions," CORE Discussion Papers RP -1707, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  12. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
  13. Billio, Monica & Pelizzon, Loriana, 2000. "Value-at-Risk: a multivariate switching regime approach," Journal of Empirical Finance, Elsevier, vol. 7(5), pages 531-554, December.
  14. repec:dgr:kubcen:199658 is not listed on IDEAS
  15. G. William Schwert, 1990. "Why Does Stock Market Volatility Change Over Time?," NBER Working Papers 2798, National Bureau of Economic Research, Inc.
  16. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  17. Guermat, Cherif & Harris, Richard D. F., 2002. "Forecasting value at risk allowing for time variation in the variance and kurtosis of portfolio returns," International Journal of Forecasting, Elsevier, vol. 18(3), pages 409-419.
  18. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  19. Bams, Dennis & Lehnert, Thorsten & Wolff, Christian C, 2002. "An Evaluation Framework for Alternative VaR Models," CEPR Discussion Papers 3403, C.E.P.R. Discussion Papers.
  20. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  21. Giot, Pierre & Laurent, Sebastien, 2003. "Market risk in commodity markets: a VaR approach," Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
  22. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
  23. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
  24. Gita Persand & Chris Brooks, 2003. "Volatility forecasting for risk management," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(1), pages 1-22.
  25. Timotheos Angelidis & Stavros Degiannakis, 2005. "Modeling risk for long and short trading positions," Journal of Risk Finance, Emerald Group Publishing, vol. 6(3), pages 226-238, May.
  26. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
  27. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  28. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  29. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  30. Yu Chuan Huang & Bor-Jing Lin, 2004. "Value-at-Risk Analysis for Taiwan Stock Index Futures: Fat Tails and Conditional Asymmetries in Return Innovations," Review of Quantitative Finance and Accounting, Springer, vol. 22(2), pages 79-95, 03.
  31. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  32. Laurent, Sebastien & Peters, Jean-Philippe, 2002. " G@RCH 2.2: An Ox Package for Estimating and Forecasting Various ARCH Models," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 447-85, July.
  33. Stavros Degiannakis, 2004. "Volatility forecasting: evidence from a fractional integrated asymmetric power ARCH skewed-t model," Applied Financial Economics, Taylor & Francis Journals, vol. 14(18), pages 1333-1342.
  34. Inui, Koji & Kijima, Masaaki, 2005. "On the significance of expected shortfall as a coherent risk measure," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 853-864, April.
  35. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
  36. Pierre Giot and S»bastien Laurent, 2001. "Value-At-Risk For Long And Short Trading Positions," Computing in Economics and Finance 2001 94, Society for Computational Economics.
  37. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:crt:wpaper:0701. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kostis Pigounakis)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.