IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/0991c197-c9e8-4904-8119-3ced8ff5a04b.html
   My bibliography  Save this paper

On Bayesian Modelling of Fat Tails and Skewness

Author

Listed:
  • Fernández, C.
  • Steel, M.F.J.

    (Tilburg University, Center For Economic Research)

Abstract

We consider a Bayesian analysis of linear regression models that can account for skewed error distributions with fat tails.The latter two features are often observed characteristics of empirical data sets, and we will formally incorporate them in the inferential process.A general procedure for introducing skewness into symmetric distributions is first proposed.Even though this allows for a great deal of flexibility in distributional shape, tail behaviour is not affected.In addition, the impact on the existence of posterior moments in a regression model with unknown scale under commonly used improper priors is quite limited.Applying this skewness procedure to a Student-$t$ distribution, we generate a ``skewed Student'' distribution, which displays both flexible tails and possible skewness, each entirely controlled by a separate scalar parameter. The linear regression model with a skewed Student error term is the main focus of the paper: we first characterize existence of the posterior distribution and its moments, using standard improper priors and allowing for inference on skewness and tail parameters.For posterior inference with this model, a numerical procedure is suggested, using Gibbs sampling with data augmentation. The latter proves very easy to implement and renders the analysis of quite challenging problems a practical possibility.Two examples illustrate the use of this model in empirical data analysis.

Suggested Citation

  • Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Modelling of Fat Tails and Skewness," Discussion Paper 1996-58, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:0991c197-c9e8-4904-8119-3ced8ff5a04b
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/524756/58.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Geweke, John, 1994. "Priors for Macroeconomic Time Series and Their Application," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 609-632, August.
    2. Fernández, C. & Steel, M.F.J., 1995. "Reference priors in non-normal location problems," Discussion Paper 1995-91, Tilburg University, Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:0991c197-c9e8-4904-8119-3ced8ff5a04b. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Richard Broekman). General contact details of provider: http://center.uvt.nl .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.