IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipas0360544221029157.html
   My bibliography  Save this article

Cascade hydropower station risk operation under the condition of inflow uncertainty

Author

Listed:
  • Lei, Kaixuan
  • Chang, Jianxia
  • Long, Ruihao
  • Wang, Yimin
  • Zhang, Hongxue

Abstract

Runoff is an important basis for the operation of hydropower. However, due to inflow uncertainty, the ideal practical operation process usually doesn't match with the plan, which exacerbates the power generation and ecological risks. Therefore, the purpose of this paper is to investigate the relationship between hydropower generation, ecology and their risks under the uncertainty of inflow. Gibbs sampling based on the copula function is presented to simulate the runoff. The scenario tree method is employed to describe the inflow uncertainty. The power generation risk operation model is developed based on the Mean-variance method. In addition, the expected minimum ecological risk model and its comparison model are proposed to analyze the relationship between power generation and ecological risk. The proposed methods are applied to a case study of the Lancang River cascade hydropower station. The results show that (1) The power generation risk of risk operation model decreased by 86.41% at the 90% scenario reduction level, compared with deterministic model. (2) There is an obvious competitive relationship between ecology and power generation, in the case of a 1% loss of expected power generation, the expected ecological risk can be reduced by 6.14%.

Suggested Citation

  • Lei, Kaixuan & Chang, Jianxia & Long, Ruihao & Wang, Yimin & Zhang, Hongxue, 2022. "Cascade hydropower station risk operation under the condition of inflow uncertainty," Energy, Elsevier, vol. 244(PA).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029157
    DOI: 10.1016/j.energy.2021.122666
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221029157
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodilla, Pablo & García-González, Javier & Baíllo, Álvaro & Cerisola, Santiago & Batlle, Carlos, 2015. "Hydro resource management, risk aversion and equilibrium in an incomplete electricity market setting," Energy Economics, Elsevier, vol. 51(C), pages 365-382.
    2. Yang, Zhe & Yang, Kan & Wang, Yufeng & Su, Lyuwen & Hu, Hu, 2021. "Long-term multi-objective power generation operation for cascade reservoirs and risk decision making under stochastic uncertainties," Renewable Energy, Elsevier, vol. 164(C), pages 313-330.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Liu Yuan & Jianzhong Zhou & Chunlong Li & Mengfei Xie & Li Mo, 2016. "Benefit and Risk Balance Optimization for Stochastic Hydropower Scheduling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3347-3361, August.
    5. Zhong, Ruida & Zhao, Tongtiegang & He, Yanhu & Chen, Xiaohong, 2019. "Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong," Energy, Elsevier, vol. 179(C), pages 685-696.
    6. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    7. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Haghrah, A., 2017. "Optimal short-term generation scheduling of hydrothermal systems by implementation of real-coded genetic algorithm based on improved Mühlenbein mutation," Energy, Elsevier, vol. 128(C), pages 77-85.
    8. Christian Hering & Jan-Frederik Mai, 2012. "Moment-based estimation of extendible Marshall-Olkin copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(5), pages 601-620, July.
    9. Séguin, Sara & Fleten, Stein-Erik & Côté, Pascal & Pichler, Alois & Audet, Charles, 2017. "Stochastic short-term hydropower planning with inflow scenario trees," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1156-1168.
    10. Gauvin, Charles & Delage, Erick & Gendreau, Michel, 2018. "A stochastic program with time series and affine decision rules for the reservoir management problem," European Journal of Operational Research, Elsevier, vol. 267(2), pages 716-732.
    11. Zhou, Yanlai & Guo, Shenglian & Chang, Fi-John & Liu, Pan & Chen, Alexander B., 2018. "Methodology that improves water utilization and hydropower generation without increasing flood risk in mega cascade reservoirs," Energy, Elsevier, vol. 143(C), pages 785-796.
    12. Jiang, Zhiqiang & Li, Rongbo & Li, Anqiang & Ji, Changming, 2018. "Runoff forecast uncertainty considered load adjustment model of cascade hydropower stations and its application," Energy, Elsevier, vol. 158(C), pages 693-708.
    13. Chang, Jianxia & Wang, Xiaoyu & Li, Yunyun & Wang, Yimin & Zhang, Hongxue, 2018. "Hydropower plant operation rules optimization response to climate change," Energy, Elsevier, vol. 160(C), pages 886-897.
    14. Herbert Hojtink & Ivo Molenaar, 1997. "A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks," Psychometrika, Springer;The Psychometric Society, vol. 62(2), pages 171-189, June.
    15. Parish, Esther S. & Pracheil, Brenda M. & McManamay, Ryan A. & Curd, Shelaine L. & DeRolph, Christopher R. & Smith, Brennan T., 2019. "Review of environmental metrics used across multiple sectors and geographies to evaluate the effects of hydropower development," Applied Energy, Elsevier, vol. 238(C), pages 101-118.
    16. Roberts, G. O. & Smith, A. F. M., 1994. "Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms," Stochastic Processes and their Applications, Elsevier, vol. 49(2), pages 207-216, February.
    17. Chavas, Jean-Paul, 2004. "Risk Analysis in Theory and Practice," Elsevier Monographs, Elsevier, edition 1, number 9780121706210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jingxian & Liu, Junyong & Qiu, Gao & Liu, Jichun & Jawad, Shafqat & Zhang, Shuai, 2023. "A spatio-temporality-enabled parallel multi-agent-based real-time dynamic dispatch for hydro-PV-PHS integrated power system," Energy, Elsevier, vol. 278(PB).
    2. Zhou, Siyu & Han, Yang & Zalhaf, Amr S. & Chen, Shuheng & Zhou, Te & Yang, Ping & Elboshy, Bahaa, 2023. "A novel multi-objective scheduling model for grid-connected hydro-wind-PV-battery complementary system under extreme weather: A case study of Sichuan, China," Renewable Energy, Elsevier, vol. 212(C), pages 818-833.
    3. Lei, Kaixuan & Chang, Jianxia & Wang, Xuebin & Guo, Aijun & Wang, Yimin & Ren, Chengqing, 2023. "Peak shaving and short-term economic operation of hydro-wind-PV hybrid system considering the uncertainty of wind and PV power," Renewable Energy, Elsevier, vol. 215(C).
    4. Wang, Te & Li, Zongkun & Ge, Wei & Zhang, Hua & Zhang, Yadong & Sun, Heqiang & Jiao, Yutie, 2023. "Risk consequence assessment of dam breach in cascade reservoirs considering risk transmission and superposition," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Ruida & Zhao, Tongtiegang & Chen, Xiaohong, 2021. "Evaluating the tradeoff between hydropower benefit and ecological interest under climate change: How will the water-energy-ecosystem nexus evolve in the upper Mekong basin?," Energy, Elsevier, vol. 237(C).
    2. Chatwattanasiri, Nida & Coit, David W. & Wattanapongsakorn, Naruemon, 2016. "System redundancy optimization with uncertain stress-based component reliability: Minimization of regret," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 73-83.
    3. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    4. Mitter, Hermine & Heumesser, Christine & Schmid, Erwin, 2014. "Modelling robust crop production portfolios to assess agricultural vulnerability to climate change," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182702, European Association of Agricultural Economists.
    5. Yueqiu Wu & Liping Wang & Yi Wang & Yanke Zhang & Jiajie Wu & Qiumei Ma & Xiaoqing Liang & Bin He, 2021. "Risk Analysis for Short-Term Operation of the Power Generation in Cascade Reservoirs Considering Multivariate Reservoir Inflow Forecast Errors," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    6. Zhao, Daping & Bai, Lin & Fang, Yong & Wang, Shouyang, 2022. "Multi‐period portfolio selection with investor views based on scenario tree," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    7. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.
    8. Rocha, Paula & Kuhn, Daniel, 2012. "Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules," European Journal of Operational Research, Elsevier, vol. 216(2), pages 397-408.
    9. Liu, Benxi & Cheng, Chuntian & Wang, Sen & Liao, Shengli & Chau, Kwok-Wing & Wu, Xinyu & Li, Weidong, 2018. "Parallel chance-constrained dynamic programming for cascade hydropower system operation," Energy, Elsevier, vol. 165(PA), pages 752-767.
    10. de Lange, Petter E. & Fleten, Stein-Erik & Gaivoronski, Alexei A., 2004. "Modeling financial reinsurance in the casualty insurance business via stochastic programming," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 991-1012, February.
    11. Firehiwot Girma Dires & Mikael Amelin & Getachew Bekele, 2023. "Long-Term Hydropower Planning for Ethiopia: A Rolling Horizon Stochastic Programming Approach with Uncertain Inflow," Energies, MDPI, vol. 16(21), pages 1-15, November.
    12. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    13. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    14. Pichler, Anton & Poledna, Sebastian & Thurner, Stefan, 2021. "Systemic risk-efficient asset allocations: Minimization of systemic risk as a network optimization problem," Journal of Financial Stability, Elsevier, vol. 52(C).
    15. Peter A. Abken & Milind M. Shrikhande, 1997. "The role of currency derivatives in internationally diversified portfolios," Economic Review, Federal Reserve Bank of Atlanta, vol. 82(Q 3), pages 34-59.
    16. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2018. "A Big data analytical framework for portfolio optimization," Papers 1811.07188, arXiv.org, revised Nov 2018.
    17. Leonard J. Mirman & Egas M. Salgueiro & Marc Santugini, 2013. "Integrating Real and Financial Decisions of the Firm," Cahiers de recherche 1333, CIRPEE.
    18. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    19. Raushan Bokusheva & Lukáš Čechura & Subal C. Kumbhakar, 2023. "Estimating persistent and transient technical efficiency and their determinants in the presence of heterogeneity and endogeneity," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(2), pages 450-472, June.
    20. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pa:s0360544221029157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.