IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v164y2021icp313-330.html
   My bibliography  Save this article

Long-term multi-objective power generation operation for cascade reservoirs and risk decision making under stochastic uncertainties

Author

Listed:
  • Yang, Zhe
  • Yang, Kan
  • Wang, Yufeng
  • Su, Lyuwen
  • Hu, Hu

Abstract

The long-term multi-objective power generation operation (LTMOPGO) inherently exists multiple uncertainties coming from streamflow forecasting and decision-making process. With help of multi-criteria decision making (MCDM), reservoir scheduling solutions are evaluated and ranked. However, conventional MCDM provide decision makers (DMs) with deterministic rank sequence ignoring uncertainty effects which may lead to unignorable risk of decision error. Furthermore, algorithm improvements are greatly emphasized on multi-objective reservoir operation, while uncertainty analysis and decision risk are ignored to some degree. To this end, we establish framework for solving LTMOPGO and MCDM under multiple uncertainties, including criteria values (CVs) and criteria weights (CWs). First, reservoir operation solutions with uncertain information are acquired by improved multi-objective particle swarm optimization (IMOPSO) and LHS-Monte Carlo simulation. Then, stochastic multi-criteria acceptability analysis (SMAA) model coupling with grey correlation analysis (GCA) and TOPSIS is developed to assist stochastic decision making. Finally, we conduct simulation experiments for cascade reservoirs in Qingjiang river and disclose effect of uncertain factors on LTMOPGO and MCDM with probabilistic rank sequence and risk information. Comparison analysis indicates feasibility and efficiency of novel SMAA-GCA&TOPSIS model compared with SMAA-2. Overall, novel framework proposed are effective ways for DMs to make highly reliable and risk-informed decisions under stochastic environment.

Suggested Citation

  • Yang, Zhe & Yang, Kan & Wang, Yufeng & Su, Lyuwen & Hu, Hu, 2021. "Long-term multi-objective power generation operation for cascade reservoirs and risk decision making under stochastic uncertainties," Renewable Energy, Elsevier, vol. 164(C), pages 313-330.
  • Handle: RePEc:eee:renene:v:164:y:2021:i:c:p:313-330
    DOI: 10.1016/j.renene.2020.08.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120313513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haichao Wang & Wenling Jiao & Risto Lahdelma & Chuanzhi Zhu & Pinghua Zou, 2014. "Stochastic Multicriteria Acceptability Analysis for Evaluation of Combined Heat and Power Units," Energies, MDPI, vol. 8(1), pages 1-20, December.
    2. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    3. Zhe Yang & Kan Yang & Hu Hu & Lyuwen Su, 2019. "The Cascade Reservoirs Multi-Objective Ecological Operation Optimization Considering Different Ecological Flow Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 207-228, January.
    4. Durbach, Ian & Lahdelma, Risto & Salminen, Pekka, 2014. "The analytic hierarchy process with stochastic judgements," European Journal of Operational Research, Elsevier, vol. 238(2), pages 552-559.
    5. Lahdelma, Risto & Miettinen, Kaisa & Salminen, Pekka, 2003. "Ordinal criteria in stochastic multicriteria acceptability analysis (SMAA)," European Journal of Operational Research, Elsevier, vol. 147(1), pages 117-127, May.
    6. X. Wang & R. Zhao & Y. Hao, 2011. "Flood Control Operations Based on the Theory of Variable Fuzzy Sets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 777-792, February.
    7. Risto Lahdelma & Pekka Salminen, 2001. "SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making," Operations Research, INFORMS, vol. 49(3), pages 444-454, June.
    8. Stefan Hajkowicz & Kerry Collins, 2007. "A Review of Multiple Criteria Analysis for Water Resource Planning and Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1553-1566, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rashid, Muhammad Usman & Abid, Irfan & Latif, Abid, 2022. "Optimization of hydropower and related benefits through Cascade Reservoirs for sustainable economic growth," Renewable Energy, Elsevier, vol. 185(C), pages 241-254.
    2. Zhang, Shuo & Kang, Yan & Gao, Xuan & Chen, Peiru & Cheng, Xiao & Song, Songbai & Li, Lingjie, 2023. "Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream," Agricultural Water Management, Elsevier, vol. 277(C).
    3. Lei, Kaixuan & Chang, Jianxia & Long, Ruihao & Wang, Yimin & Zhang, Hongxue, 2022. "Cascade hydropower station risk operation under the condition of inflow uncertainty," Energy, Elsevier, vol. 244(PA).
    4. Yueqiu Wu & Liping Wang & Yi Wang & Yanke Zhang & Jiajie Wu & Qiumei Ma & Xiaoqing Liang & Bin He, 2021. "Risk Analysis for Short-Term Operation of the Power Generation in Cascade Reservoirs Considering Multivariate Reservoir Inflow Forecast Errors," Sustainability, MDPI, vol. 13(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    2. Goers, Jana & Horton, Graham, 2023. "Combinatorial multi-criteria acceptability analysis: A decision analysis and consensus-building approach for cooperative groups," European Journal of Operational Research, Elsevier, vol. 308(1), pages 243-254.
    3. García-Cáceres, Rafael Guillermo, 2020. "Stochastic Multicriteria Acceptability Analysis – Matching (SMAA-M)," Operations Research Perspectives, Elsevier, vol. 7(C).
    4. Jiang, Yanping & Liang, Xia & Liang, Haiming & Yang, Ningman, 2018. "Multiple criteria decision making with interval stochastic variables: A method based on interval stochastic dominance," European Journal of Operational Research, Elsevier, vol. 271(2), pages 632-643.
    5. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    6. García Cáceres, Rafael Guillermo & Aráoz Durand, Julián Arturo & Gómez, Fernando Palacios, 2009. "Integral analysis method - IAM," European Journal of Operational Research, Elsevier, vol. 192(3), pages 891-903, February.
    7. Podinovski, Vladislav V., 2020. "Maximum likelihood solutions for multicriterial choice problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 299-308.
    8. Lahdelma, Risto & Miettinen, Kaisa & Salminen, Pekka, 2005. "Reference point approach for multiple decision makers," European Journal of Operational Research, Elsevier, vol. 164(3), pages 785-791, August.
    9. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    10. Kangas, Jyrki & Store, Ron & Kangas, Annika, 2005. "Socioecological landscape planning approach and multicriteria acceptability analysis in multiple-purpose forest management," Forest Policy and Economics, Elsevier, vol. 7(4), pages 603-614, May.
    11. Haichao Wang & Wenling Jiao & Risto Lahdelma & Chuanzhi Zhu & Pinghua Zou, 2014. "Stochastic Multicriteria Acceptability Analysis for Evaluation of Combined Heat and Power Units," Energies, MDPI, vol. 8(1), pages 1-20, December.
    12. Lahdelma, Risto & Makkonen, Simo & Salminen, Pekka, 2009. "Two ways to handle dependent uncertainties in multi-criteria decision problems," Omega, Elsevier, vol. 37(1), pages 79-92, February.
    13. Jiménez, Antonio & Mateos, Alfonso & Sabio, Pilar, 2013. "Dominance intensity measure within fuzzy weight oriented MAUT: An application," Omega, Elsevier, vol. 41(2), pages 397-405.
    14. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 693-707.
    15. Abdellah Menou & Risto Lahdelma & Pekka Salminen, 2022. "Multicriteria Decision Aiding for Planning Renewable Power Production at Moroccan Airports," Energies, MDPI, vol. 15(14), pages 1-20, July.
    16. Lahdelma, Risto & Salminen, Pekka, 2009. "Prospect theory and stochastic multicriteria acceptability analysis (SMAA)," Omega, Elsevier, vol. 37(5), pages 961-971, October.
    17. Silvia Angilella & Maria Rosaria Pappalardo, 2022. "Performance assessment of energy companies employing Hierarchy Stochastic Multi-Attribute Acceptability Analysis," Operational Research, Springer, vol. 22(1), pages 299-370, March.
    18. De Matteis, Domenico & Ishizaka, Alessio & Resce, Giuliano, 2019. "The ‘postcode lottery’ of the Italian public health bill analysed with the hierarchy Stochastic Multiobjective Acceptability Analysis," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    19. Wang, Guangchao & Jia, Ning & Ma, Shoufeng & Qi, Hang, 2014. "A rank-dependent bi-criterion equilibrium model for stochastic transportation environment," European Journal of Operational Research, Elsevier, vol. 235(3), pages 511-529.
    20. Kangas, Annika S. & Kangas, Jyrki & Lahdelma, Risto & Salminen, Pekka, 2006. "Using SMAA-2 method with dependent uncertainties for strategic forest planning," Forest Policy and Economics, Elsevier, vol. 9(2), pages 113-125, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:164:y:2021:i:c:p:313-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.