IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v37y2013i6p2124-2139.html
   My bibliography  Save this article

Nonlinear portfolio selection using approximate parametric Value-at-Risk

Author

Listed:
  • Cui, Xueting
  • Zhu, Shushang
  • Sun, Xiaoling
  • Li, Duan

Abstract

As the skewed return distribution is a prominent feature in nonlinear portfolio selection problems which involve derivative assets with nonlinear payoff structures, Value-at-Risk (VaR) is particularly suitable to serve as a risk measure in nonlinear portfolio selection. Unfortunately, the nonlinear portfolio selection formulation using VaR risk measure is in general a computationally intractable optimization problem. We investigate in this paper nonlinear portfolio selection models using approximate parametric Value-at-Risk. More specifically, we use first-order and second-order approximations of VaR for constructing portfolio selection models, and show that the portfolio selection models based on Delta-only, Delta–Gamma-normal and worst-case Delta–Gamma VaR approximations can be reformulated as second-order cone programs, which are polynomially solvable using interior-point methods. Our simulation and empirical results suggest that the model using Delta–Gamma-normal VaR approximation performs the best in terms of a balance between approximation accuracy and computational efficiency.

Suggested Citation

  • Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
  • Handle: RePEc:eee:jbfina:v:37:y:2013:i:6:p:2124-2139
    DOI: 10.1016/j.jbankfin.2013.01.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426613000617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2013.01.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dušan Isakov & Bernard Morard, 2001. "Improving Portfolio Performance with Option Strategies: Evidence from Switzerland," European Financial Management, European Financial Management Association, vol. 7(1), pages 73-91, March.
    2. Jianfeng Liang & Shuzhong Zhang & Duan Li, 2008. "Optioned Portfolio Selection: Models And Analysis," Mathematical Finance, Wiley Blackwell, vol. 18(4), pages 569-593, October.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Santos, André A.P. & Nogales, Francisco J. & Ruiz, Esther & Dijk, Dick Van, 2012. "Optimal portfolios with minimum capital requirements," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 1928-1942.
    5. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    6. Benati, Stefano & Rizzi, Romeo, 2007. "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem," European Journal of Operational Research, Elsevier, vol. 176(1), pages 423-434, January.
    7. Alexander, S. & Coleman, T.F. & Li, Y., 2006. "Minimizing CVaR and VaR for a portfolio of derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 583-605, February.
    8. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    9. Peter Ritchken & Rob Trevor, 1999. "Pricing Options under Generalized GARCH and Stochastic Volatility Processes," Journal of Finance, American Finance Association, vol. 54(1), pages 377-402, February.
    10. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    11. Guangwu Liu & L. Jeff Hong, 2011. "Kernel Estimation of the Greeks for Options with Discontinuous Payoffs," Operations Research, INFORMS, vol. 59(1), pages 96-108, February.
    12. Castellacci, Giuseppe & Siclari, Michael J., 2003. "The practice of Delta-Gamma VaR: Implementing the quadratic portfolio model," European Journal of Operational Research, Elsevier, vol. 150(3), pages 529-545, November.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    15. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marah-Lisanne Thormann & Phan Tu Vuong & Alain B. Zemkoho, 2024. "The Boosted Difference of Convex Functions Algorithm for Value-at-Risk Constrained Portfolio Optimization," Papers 2402.09194, arXiv.org.
    2. Ji Cao, 2017. "How does the underlying affect the risk-return profiles of structured products?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(1), pages 27-47, February.
    3. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    4. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    5. Zhu, Shushang & Zhu, Wei & Pei, Xi & Cui, Xueting, 2020. "Hedging crash risk in optimal portfolio selection," Journal of Banking & Finance, Elsevier, vol. 119(C).
    6. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    7. Sun, Yufei & Aw, Grace & Teo, Kok Lay & Zhu, Yanjian & Wang, Xiangyu, 2016. "Multi-period portfolio optimization under probabilistic risk measure," Finance Research Letters, Elsevier, vol. 18(C), pages 60-66.
    8. Xueting Cui & Xiaoling Sun & Shushang Zhu & Rujun Jiang & Duan Li, 2018. "Portfolio Optimization with Nonparametric Value at Risk: A Block Coordinate Descent Method," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 454-471, August.
    9. Chen, Rongda & Yu, Lean, 2013. "A novel nonlinear value-at-risk method for modeling risk of option portfolio with multivariate mixture of normal distributions," Economic Modelling, Elsevier, vol. 35(C), pages 796-804.
    10. Nikola Radivojevic & Milena Cvjetkovic & Saša Stepanov, 2016. "The new hybrid value at risk approach based on the extreme value theory," Estudios de Economia, University of Chile, Department of Economics, vol. 43(1 Year 20), pages 29-52, June.
    11. Zaiwen Wen & Xianhua Peng & Xin Liu & Xiaoling Sun & Xiaodi Bai, 2013. "Asset Allocation under the Basel Accord Risk Measures," Papers 1308.1321, arXiv.org.
    12. Nikola Radivojević & Nikola V. Ćurčić & Djurdjica Dj. Vukajlović, 2017. "Hull-White’s value at risk model: case study of Baltic equities market," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(5), pages 1023-1041, September.
    13. Francesco Cesarone & Manuel L. Martino & Fabio Tardella, 2023. "Mean-Variance-VaR portfolios: MIQP formulation and performance analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 1043-1069, September.
    14. Akhter Mohiuddin Rather & V. N. Sastry & Arun Agarwal, 2017. "Stock market prediction and Portfolio selection models: a survey," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 558-579, September.
    15. Xiaochuan Pang & Shushang Zhu & Xueting Cui & Jiali Ma, 2022. "Systemic Risk of Optioned Portfolios: Controllability and Optimization," Papers 2209.04685, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    2. Pang, Xiaochuan & Zhu, Shushang & Cui, Xueting & Ma, Jiali, 2023. "Systemic risk of optioned portfolio: Controllability and optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    3. Babat, Onur & Vera, Juan C. & Zuluaga, Luis F., 2018. "Computing near-optimal Value-at-Risk portfolios using integer programming techniques," European Journal of Operational Research, Elsevier, vol. 266(1), pages 304-315.
    4. Zhu, Shushang & Zhu, Wei & Pei, Xi & Cui, Xueting, 2020. "Hedging crash risk in optimal portfolio selection," Journal of Banking & Finance, Elsevier, vol. 119(C).
    5. Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
    6. Vladimir Rankovic & Mikica Drenovak & Branko Uroševic & Ranko Jelic, 2016. "Mean Univariate-GARCH VaR Portfolio Optimization: Actual Portfolio Approach," CESifo Working Paper Series 5731, CESifo.
    7. Onur Babat & Juan C. Vera & Luis F. Zuluaga, 2021. "Computing near-optimal Value-at-Risk portfolios using Integer Programming techniques," Papers 2107.07339, arXiv.org.
    8. Hsieh, Chung-Chi & Lu, Yu-Ting, 2010. "Manufacturer's return policy in a two-stage supply chain with two risk-averse retailers and random demand," European Journal of Operational Research, Elsevier, vol. 207(1), pages 514-523, November.
    9. Soleimani, Hamed & Govindan, Kannan, 2014. "Reverse logistics network design and planning utilizing conditional value at risk," European Journal of Operational Research, Elsevier, vol. 237(2), pages 487-497.
    10. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    11. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    12. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    13. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    14. Xiaochuan Pang & Shushang Zhu & Xueting Cui & Jiali Ma, 2022. "Systemic Risk of Optioned Portfolios: Controllability and Optimization," Papers 2209.04685, arXiv.org.
    15. Friedrich, Stefan & Paul, Carola & Brandl, Susanne & Biber, Peter & Messerer, Katharina & Knoke, Thomas, 2019. "Economic impact of growth effects in mixed stands of Norway spruce and European beech – A simulation based study," Forest Policy and Economics, Elsevier, vol. 104(C), pages 65-80.
    16. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    17. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    18. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
    19. Adabi Firouzjaee , Bagher & Mehrara , Mohsen & Mohammadi , Shapour, 2014. "Optimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 9(1), pages 1-30, October.
    20. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.

    More about this item

    Keywords

    Portfolio selection; Value-at-Risk; European option; Delta–Gamma approximation; Second-order cone programming;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:37:y:2013:i:6:p:2124-2139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.